These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


186 related items for PubMed ID: 35896504

  • 1. Accurate simulation of cuff electrode stimulation predicting in-vivo strength-duration thresholds.
    Lazorchak N, Horn MR, Muzquiz MI, Mintch LM, Yoshida K.
    Artif Organs; 2022 Oct; 46(10):2073-2084. PubMed ID: 35896504
    [Abstract] [Full Text] [Related]

  • 2. Characterization of the electrical properties of mammalian peripheral nerve laminae.
    Horn MR, Vetter C, Bashirullah R, Carr M, Yoshida K.
    Artif Organs; 2023 Apr; 47(4):705-720. PubMed ID: 36720049
    [Abstract] [Full Text] [Related]

  • 3. Modelling the impact of altered axonal morphometry on the response of regenerative nervous tissue to electrical stimulation through macro-sieve electrodes.
    Zellmer ER, MacEwan MR, Moran DW.
    J Neural Eng; 2018 Apr; 15(2):026009. PubMed ID: 29192607
    [Abstract] [Full Text] [Related]

  • 4. A novel electrode array for diameter-dependent control of axonal excitability: a simulation study.
    Lertmanorat Z, Durand DM.
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1242-50. PubMed ID: 15248540
    [Abstract] [Full Text] [Related]

  • 5. Validated computational models predict vagus nerve stimulation thresholds in preclinical animals and humans.
    Musselman ED, Pelot NA, Grill WM.
    J Neural Eng; 2023 Jun 15; 20(3):. PubMed ID: 37257454
    [Abstract] [Full Text] [Related]

  • 6. Enhancing the selective electrical activation of human vagal nerve fibers: a comparative computational modeling study with validation in a rat sciatic model.
    Tovbis D, Lee E, Koh RGL, Jeong R, Agur A, Yoo PB.
    J Neural Eng; 2023 Nov 22; 20(6):. PubMed ID: 37963401
    [Abstract] [Full Text] [Related]

  • 7. Fibers in smaller fascicles have lower activation thresholds with cuff electrodes due to thinner perineurium and smaller cross-sectional area.
    Davis CJ, Musselman ED, Grill WM, Pelot NA.
    J Neural Eng; 2023 Apr 04; 20(2):. PubMed ID: 36917856
    [Abstract] [Full Text] [Related]

  • 8. In vivo peripheral nerve activation using sinusoidal low-frequency alternating currents.
    Alhawwash A, Muzquiz MI, Richardson L, Vetter C, Smolik M, Goodwill A, Yoshida K.
    Artif Organs; 2022 Oct 04; 46(10):2055-2065. PubMed ID: 35730955
    [Abstract] [Full Text] [Related]

  • 9. Mathematical model of nerve fiber activation during low back peripheral nerve field stimulation: analysis of electrode implant depth.
    Mørch CD, Nguyen GP, Wacnik PW, Andersen OK.
    Neuromodulation; 2014 Apr 04; 17(3):218-25; discussion 225. PubMed ID: 24612321
    [Abstract] [Full Text] [Related]

  • 10. On the parameters used in finite element modeling of compound peripheral nerves.
    Pelot NA, Behrend CE, Grill WM.
    J Neural Eng; 2019 Feb 04; 16(1):016007. PubMed ID: 30507555
    [Abstract] [Full Text] [Related]

  • 11. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity.
    Sabetian P, Popovic MR, Yoo PB.
    J Neural Eng; 2017 Jun 04; 14(3):036015. PubMed ID: 28251960
    [Abstract] [Full Text] [Related]

  • 12. Fascicular perineurium thickness, size, and position affect model predictions of neural excitation.
    Grinberg Y, Schiefer MA, Tyler DJ, Gustafson KJ.
    IEEE Trans Neural Syst Rehabil Eng; 2008 Dec 04; 16(6):572-81. PubMed ID: 19144589
    [Abstract] [Full Text] [Related]

  • 13. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals.
    Pelot NA, Behrend CE, Grill WM.
    J Neural Eng; 2017 Aug 04; 14(4):046022. PubMed ID: 28361793
    [Abstract] [Full Text] [Related]

  • 14. Computational models of compound nerve action potentials: Efficient filter-based methods to quantify effects of tissue conductivities, conduction distance, and nerve fiber parameters.
    Peña E, Pelot NA, Grill WM.
    PLoS Comput Biol; 2024 Mar 04; 20(3):e1011833. PubMed ID: 38427699
    [Abstract] [Full Text] [Related]

  • 15. A finite element method framework to model extracellular neural stimulation.
    Fellner A, Heshmat A, Werginz P, Rattay F.
    J Neural Eng; 2022 Apr 07; 19(2):. PubMed ID: 35320783
    [Abstract] [Full Text] [Related]

  • 16. Recruitment characteristics of nerve fascicles stimulated by a multigroove electrode.
    Koole P, Holsheimer J, Struijk JJ, Verloop AJ.
    IEEE Trans Rehabil Eng; 1997 Mar 07; 5(1):40-50. PubMed ID: 9086384
    [Abstract] [Full Text] [Related]

  • 17. Electrode array for reversing the recruitment order of peripheral nerve stimulation: experimental studies.
    Lertmanorat Z, Gustafson KJ, Durand DM.
    Ann Biomed Eng; 2006 Jan 07; 34(1):152-60. PubMed ID: 16453204
    [Abstract] [Full Text] [Related]

  • 18. High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog.
    Yoo PB, Lubock NB, Hincapie JG, Ruble SB, Hamann JJ, Grill WM.
    J Neural Eng; 2013 Apr 07; 10(2):026003. PubMed ID: 23370017
    [Abstract] [Full Text] [Related]

  • 19. Optimizing nerve cuff stimulation of targeted regions through use of genetic algorithms.
    Brill N, Tyler D.
    Annu Int Conf IEEE Eng Med Biol Soc; 2011 Apr 07; 2011():5811-4. PubMed ID: 22255661
    [Abstract] [Full Text] [Related]

  • 20. Effect of bipolar cuff electrode design on block thresholds in high-frequency electrical neural conduction block.
    Ackermann DM, Foldes EL, Bhadra N, Kilgore KL.
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct 07; 17(5):469-77. PubMed ID: 19840914
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.