These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 3590284

  • 1. Viscosity of mixtures of sickle and normal red cells at varying hematocrit levels. Implications for transfusion.
    Schmalzer EA, Lee JO, Brown AK, Usami S, Chien S.
    Transfusion; 1987; 27(3):228-33. PubMed ID: 3590284
    [Abstract] [Full Text] [Related]

  • 2. Rheologic behavior of sickle and normal red blood cell mixtures in sickle plasma: implications for transfusion therapy.
    Alexy T, Pais E, Armstrong JK, Meiselman HJ, Johnson CS, Fisher TC.
    Transfusion; 2006 Jun; 46(6):912-8. PubMed ID: 16734807
    [Abstract] [Full Text] [Related]

  • 3. Direct measurement of the internal viscosity of sickle erythrocytes as a function of cell density.
    Morse PD, Warth JA.
    Biochim Biophys Acta; 1990 Jun 12; 1053(1):49-55. PubMed ID: 2163686
    [Abstract] [Full Text] [Related]

  • 4. Effects of transfusion on rheological properties of blood in sickle cell anemia.
    Jan K, Usami S, Smith JA.
    Transfusion; 1982 Jun 12; 22(1):17-20. PubMed ID: 7064201
    [Abstract] [Full Text] [Related]

  • 5. Abnormal rheology of oxygenated blood in sickle cell anemia.
    Chien S, Usami S, Bertles JF.
    J Clin Invest; 1970 Apr 12; 49(4):623-34. PubMed ID: 5443167
    [Abstract] [Full Text] [Related]

  • 6. Sickle cell anemia as a rheologic disease.
    Horne MK.
    Am J Med; 1981 Feb 12; 70(2):288-98. PubMed ID: 7008586
    [Abstract] [Full Text] [Related]

  • 7. Deformability of stored normal and sickle haemoglobin erythrocytes.
    Adewuyi JO, Awarun JA.
    Afr J Med Med Sci; 1990 Jun 12; 19(2):115-9. PubMed ID: 2115726
    [Abstract] [Full Text] [Related]

  • 8. Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin C disease.
    Tripette J, Alexy T, Hardy-Dessources MD, Mougenel D, Beltan E, Chalabi T, Chout R, Etienne-Julan M, Hue O, Meiselman HJ, Connes P.
    Haematologica; 2009 Aug 12; 94(8):1060-5. PubMed ID: 19644138
    [Abstract] [Full Text] [Related]

  • 9. Viscoelastic properties of sickle cells and hemoglobin.
    Chien S, King RG, Kaperonis AA, Usami S.
    Blood Cells; 1982 Aug 12; 8(1):53-64. PubMed ID: 7115978
    [Abstract] [Full Text] [Related]

  • 10. Low-shear red blood cell oxygen transport effectiveness is adversely affected by transfusion and further worsened by deoxygenation in sickle cell disease patients on chronic transfusion therapy.
    Detterich J, Alexy T, Rabai M, Wenby R, Dongelyan A, Coates T, Wood J, Meiselman H.
    Transfusion; 2013 Feb 12; 53(2):297-305. PubMed ID: 22882132
    [Abstract] [Full Text] [Related]

  • 11. Filterability of sickle cells as a function of pO2: role of physico-chemical factors.
    Kraiem A, Craescu CT, Galacteros F, Martin-Caburi J, Domenget C, Garel MC, Beuzard Y.
    Biorheology; 1989 Feb 12; 26(4):771-84. PubMed ID: 2611370
    [Abstract] [Full Text] [Related]

  • 12. Flow dynamics of human sickle erythrocytes in the mesenteric microcirculation of the exchange-transfused rat.
    Kurantsin-Mills J, Jacobs HM, Klug PP, Lessin LS.
    Microvasc Res; 1987 Sep 12; 34(2):152-67. PubMed ID: 3670112
    [Abstract] [Full Text] [Related]

  • 13. GBT440 improves red blood cell deformability and reduces viscosity of sickle cell blood under deoxygenated conditions.
    Dufu K, Patel M, Oksenberg D, Cabrales P.
    Clin Hemorheol Microcirc; 2018 Sep 12; 70(1):95-105. PubMed ID: 29660913
    [Abstract] [Full Text] [Related]

  • 14. Endothelial cell interactions with sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow.
    Barabino GA, McIntire LV, Eskin SG, Sears DA, Udden M.
    Blood; 1987 Jul 12; 70(1):152-7. PubMed ID: 3593962
    [Abstract] [Full Text] [Related]

  • 15. Effect of inositol hexaphosphate-loaded red blood cells (RBCs) on the rheology of sickle RBCs.
    Lamarre Y, Bourgeaux V, Pichon A, Hardeman MR, Campion Y, Hardeman-Zijp M, Martin C, Richalet JP, Bernaudin F, Driss F, Godfrin Y, Connes P.
    Transfusion; 2013 Mar 12; 53(3):627-36. PubMed ID: 22804873
    [Abstract] [Full Text] [Related]

  • 16. Cellular and rheological factors contributing to sickle cell microvascular occlusion.
    Kurantsin-Mills J, Lessin LS.
    Blood Cells; 1986 Mar 12; 12(1):249-70. PubMed ID: 3790735
    [Abstract] [Full Text] [Related]

  • 17. Theoretical models of capillary flow.
    Skalak R.
    Blood Cells; 1982 Mar 12; 8(1):147-52. PubMed ID: 7115972
    [Abstract] [Full Text] [Related]

  • 18. The effect of cell hydration on the deformability of normal and sickle erythrocytes.
    Gulley ML, Ross DW, Feo C, Orringer EP.
    Am J Hematol; 1982 Dec 12; 13(4):283-91. PubMed ID: 7158623
    [Abstract] [Full Text] [Related]

  • 19. Ektacytometric measurement of sickle cell deformability as a continuous function of oxygen tension.
    Sorette MP, Lavenant MG, Clark MR.
    Blood; 1987 Jan 12; 69(1):316-23. PubMed ID: 3790727
    [Abstract] [Full Text] [Related]

  • 20. Erythrocyte sialic acid in human sickle-cell disease.
    Onyemelukwe GC, Esievo KA, Kwanashie CN, Kulkarni AG, Obinechie EN.
    J Comp Pathol; 1987 Mar 12; 97(2):143-7. PubMed ID: 3597847
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.