These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
134 related items for PubMed ID: 35913021
1. Exploiting synergistic effects of brittle and plastic excipients in directly compressible formulations of sitagliptin phosphate and sitagliptin hydrochloride. Zakowiecki D, Edinger P, Papaioannou M, Hess T, Kubiak B, Terlecka A. Pharm Dev Technol; 2022 Jul; 27(6):702-713. PubMed ID: 35913021 [Abstract] [Full Text] [Related]
2. Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile. Hosseini A, Körber M, Bodmeier R. Int J Pharm; 2013 Dec 05; 457(2):503-9. PubMed ID: 23892153 [Abstract] [Full Text] [Related]
3. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients. Iyer RM, Hegde S, Dinunzio J, Singhal D, Malick W. Pharm Dev Technol; 2014 Aug 05; 19(5):583-92. PubMed ID: 23941645 [Abstract] [Full Text] [Related]
4. A formulation strategy for solving the overgranulation problem in high shear wet granulation. Osei-Yeboah F, Zhang M, Feng Y, Sun CC. J Pharm Sci; 2014 Aug 05; 103(8):2434-40. PubMed ID: 24985120 [Abstract] [Full Text] [Related]
5. Effect of microcrystalline cellulose on liquid penetration in and disintegration of directly compressed tablets. Lerk CF, Bolhuis GK, de Boer AH. J Pharm Sci; 1979 Feb 05; 68(2):205-11. PubMed ID: 423092 [Abstract] [Full Text] [Related]
6. Development of agglomerated directly compressible diluent consisting of brittle and ductile materials. Gohel MC, Jogani PD, Bariya SE. Pharm Dev Technol; 2003 Feb 05; 8(2):143-51. PubMed ID: 12760565 [Abstract] [Full Text] [Related]
7. A compressibility based model for predicting the tensile strength of directly compressed pharmaceutical powder mixtures. Reynolds GK, Campbell JI, Roberts RJ. Int J Pharm; 2017 Oct 05; 531(1):215-224. PubMed ID: 28823886 [Abstract] [Full Text] [Related]
8. Ultrasound transmission measurements for tensile strength evaluation of tablets. Simonaho SP, Takala TA, Kuosmanen M, Ketolainen J. Int J Pharm; 2011 May 16; 409(1-2):104-10. PubMed ID: 21356298 [Abstract] [Full Text] [Related]
9. Effects of various excipients on tizanidine hydrochloride tablets prepared by direct compression. Khan LG, Razvi N, Anjum F, Siddiqui SA, Ghayas S. Pak J Pharm Sci; 2014 Sep 16; 27(5):1249-54. PubMed ID: 25176379 [Abstract] [Full Text] [Related]
10. Roll Compaction/Dry Granulation of Dibasic Calcium Phosphate Anhydrous-Does the Morphology of the Raw Material Influence the Tabletability of Dry Granules? Grote S, Kleinebudde P. J Pharm Sci; 2018 Apr 16; 107(4):1104-1111. PubMed ID: 29247739 [Abstract] [Full Text] [Related]
11. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction. Wu SJ, Sun C. J Pharm Sci; 2007 May 16; 96(5):1445-50. PubMed ID: 17455348 [Abstract] [Full Text] [Related]
12. Directly compressible formulation of immediate release rosuvastatin calcium tablets stabilized with tribasic calcium phosphate. Zakowiecki D, Hess T, Cal K, Mikolaszek B, Garbacz G, Haznar-Garbacz D. Pharm Dev Technol; 2022 Apr 16; 27(4):425-434. PubMed ID: 35499305 [Abstract] [Full Text] [Related]
13. Properties of fujicalin, a new modified anhydrous dibasic calcium phosphate for direct compression: comparison with dicalcium phosphate dihydrate. Schlack H, Bauer-Brandl A, Schubert R, Becker D. Drug Dev Ind Pharm; 2001 Sep 16; 27(8):789-801. PubMed ID: 11699830 [Abstract] [Full Text] [Related]
14. A methodological evaluation and predictive in silico investigation into the multi-functionality of arginine in directly compressed tablets. ElShaer A, Kaialy W, Akhtar N, Iyire A, Hussain T, Alany R, Mohammed AR. Eur J Pharm Biopharm; 2015 Oct 16; 96():272-81. PubMed ID: 26255158 [Abstract] [Full Text] [Related]
15. Lignin and Cellulose Blends as Pharmaceutical Excipient for Tablet Manufacturing via Direct Compression. Domínguez-Robles J, Stewart SA, Rendl A, González Z, Donnelly RF, Larrañeta E. Biomolecules; 2019 Aug 28; 9(9):. PubMed ID: 31466387 [Abstract] [Full Text] [Related]
16. Comparison studies on the percolation thresholds of binary mixture tablets containing excipients of plastic/brittle and plastic/plastic deformation properties. Amin MC, Fell JT. Drug Dev Ind Pharm; 2004 Aug 28; 30(9):937-45. PubMed ID: 15554218 [Abstract] [Full Text] [Related]
17. Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression, Part 2: Tableting Properties. Chaheen M, Bataille B, Yassine A, Belamie E, Sharkawi T. J Pharm Sci; 2019 Oct 28; 108(10):3319-3328. PubMed ID: 31145923 [Abstract] [Full Text] [Related]
18. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets. Lin SY, Lin KH, Li MJ. J Pharm Sci; 2002 Sep 28; 91(9):2040-6. PubMed ID: 12210050 [Abstract] [Full Text] [Related]
19. Influence of formulation composition and processing on the content uniformity of low-dose tablets manufactured at kilogram scale. Morris DG, Truitt BF, Kong A, Leyva N, Luner PE. Pharm Dev Technol; 2009 Sep 28; 14(5):451-60. PubMed ID: 19552558 [Abstract] [Full Text] [Related]
20. Calcium phosphates in pharmaceutical tableting. 2. Comparison of tableting properties. Schmidt PC, Herzog R. Pharm World Sci; 1993 Jun 18; 15(3):116-22. PubMed ID: 8348107 [Abstract] [Full Text] [Related] Page: [Next] [New Search]