These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


216 related items for PubMed ID: 3591372

  • 1. Enzyme levels of the NADH shuttle systems: measurements in isolated muscle fibres from humans of differing physical activity.
    Schantz PG, Henriksson J.
    Acta Physiol Scand; 1987 Apr; 129(4):505-15. PubMed ID: 3591372
    [Abstract] [Full Text] [Related]

  • 2. Malate-aspartate and alpha-glycerophosphate shuttle enzyme levels in human skeletal muscle: methodological considerations and effect of endurance training.
    Schantz PG, Sjöberg B, Svedenhag J.
    Acta Physiol Scand; 1986 Nov; 128(3):397-407. PubMed ID: 3491492
    [Abstract] [Full Text] [Related]

  • 3. Enzyme levels in pools of microdissected human muscle fibres of identified type. Adaptive response to exercise.
    Essén-Gustavsson B, Henriksson J.
    Acta Physiol Scand; 1984 Apr; 120(4):505-15. PubMed ID: 6237550
    [Abstract] [Full Text] [Related]

  • 4. NADH shuttle enzymes and cytochrome b5 reductase in human skeletal muscle: effect of strength training.
    Schantz PG, Källman M.
    J Appl Physiol (1985); 1989 Jul; 67(1):123-7. PubMed ID: 2527225
    [Abstract] [Full Text] [Related]

  • 5. Plasticity of human skeletal muscle with special reference to effects of physical training on enzyme levels of the NADH shuttles and phenotypic expression of slow and fast myofibrillar proteins.
    Schantz PG.
    Acta Physiol Scand Suppl; 1986 Jul; 558():1-62. PubMed ID: 2950727
    [Abstract] [Full Text] [Related]

  • 6. Skeletal muscle of trained and untrained paraplegics and tetraplegics.
    Schantz P, Sjöberg B, Widebeck AM, Ekblom B.
    Acta Physiol Scand; 1997 Sep; 161(1):31-9. PubMed ID: 9381947
    [Abstract] [Full Text] [Related]

  • 7. Characterization of the kinetics of cardiac cytosolic malate dehydrogenase and comparative analysis of cytosolic and mitochondrial isoforms.
    Dasika SK, Vinnakota KC, Beard DA.
    Biophys J; 2015 Jan 20; 108(2):420-30. PubMed ID: 25606689
    [Abstract] [Full Text] [Related]

  • 8. Demonstration of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate-malate shuttle. A study involving fumarase, malate dehydrogenase, citrate synthesis and aspartate aminotransferase.
    Beeckmans S, Kanarek L.
    Eur J Biochem; 1981 Jul 20; 117(3):527-35. PubMed ID: 7285903
    [Abstract] [Full Text] [Related]

  • 9. Chronic stimulation of mammalian muscle: enzyme and metabolic changes in individual fibres.
    Henriksson J, Salmons S, Lowry OH.
    Biomed Biochim Acta; 1989 Jul 20; 48(5-6):S445-54. PubMed ID: 2527028
    [Abstract] [Full Text] [Related]

  • 10. Enzyme activities in type I and II muscle fibres of human skeletal muscle in relation to age and torque development.
    Borges O, Essén-Gustavsson B.
    Acta Physiol Scand; 1989 May 20; 136(1):29-36. PubMed ID: 2773660
    [Abstract] [Full Text] [Related]

  • 11. Effects of ageing and physical training on rat skeletal muscle. An experimental study on the properties of collagen, laminin, and fibre types in muscles serving different functions.
    Kovanen V.
    Acta Physiol Scand Suppl; 1989 May 20; 577():1-56. PubMed ID: 2922997
    [Abstract] [Full Text] [Related]

  • 12. Effect of training on the activity of five muscle enzymes studied on elite cross-country skiers.
    Evertsen F, Medbo JI, Jebens E, Gjøvaag TF.
    Acta Physiol Scand; 1999 Nov 20; 167(3):247-57. PubMed ID: 10606827
    [Abstract] [Full Text] [Related]

  • 13. Effect of endurance training on oestrogen receptor alpha expression in different rat skeletal muscle type.
    Lemoine S, Granier P, Tiffoche C, Berthon PM, Thieulant ML, Carré F, Delamarche P.
    Acta Physiol Scand; 2002 Jul 20; 175(3):211-7. PubMed ID: 12100360
    [Abstract] [Full Text] [Related]

  • 14. Anaerobic threshold, skeletal muscle enzymes and fiber composition in young female cross-country skiers.
    Rusko H, Rahkila P, Karvinen E.
    Acta Physiol Scand; 1980 Mar 20; 108(3):263-8. PubMed ID: 7376921
    [Abstract] [Full Text] [Related]

  • 15. Regulation of malate dehydrogenases from neonatal, adolescent, and mature rat brain.
    Malik P, McKenna MC, Tildon JT.
    Neurochem Res; 1993 Mar 20; 18(3):247-57. PubMed ID: 8479597
    [Abstract] [Full Text] [Related]

  • 16. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L, Bremer J, Davis EJ.
    J Biol Chem; 1976 Jan 25; 251(2):277-84. PubMed ID: 1245472
    [Abstract] [Full Text] [Related]

  • 17. Creatine kinase MB and citrate synthase in type I and type II muscle fibres in trained and untrained men.
    Jansson E, Sylvén C.
    Eur J Appl Physiol Occup Physiol; 1985 Jan 25; 54(2):207-9. PubMed ID: 4043049
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast.
    Easlon E, Tsang F, Skinner C, Wang C, Lin SJ.
    Genes Dev; 2008 Apr 01; 22(7):931-44. PubMed ID: 18381895
    [Abstract] [Full Text] [Related]

  • 20. Effect of endurance training on the capacity of red and white skeletal muscle of mouse to oxidize carboxyl-14C-labelled palmitate.
    Salminen A, Vihko V, Pilström L.
    Acta Physiol Scand; 1977 Nov 01; 101(3):318-28. PubMed ID: 202144
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.