These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 35925494
1. An NADPH-auxotrophic Corynebacterium glutamicum recombinant strain and used it to construct L-leucine high-yielding strain. Chen SL, Liu TS, Zhang WG, Xu JZ. Int Microbiol; 2023 Jan; 26(1):11-24. PubMed ID: 35925494 [Abstract] [Full Text] [Related]
2. Deciphering the crucial roles of AraC-type transcriptional regulator Cgl2680 on NADPH metabolism and L-lysine production in Corynebacterium glutamicum. Wang L, Yu H, Xu J, Ruan H, Zhang W. World J Microbiol Biotechnol; 2020 May 26; 36(6):82. PubMed ID: 32458148 [Abstract] [Full Text] [Related]
3. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply. Zhan M, Kan B, Dong J, Xu G, Han R, Ni Y. J Ind Microbiol Biotechnol; 2019 Jan 26; 46(1):45-54. PubMed ID: 30446890 [Abstract] [Full Text] [Related]
4. Improvement of l-Leucine Production in Corynebacterium glutamicum by Altering the Redox Flux. Wang YY, Zhang F, Xu JZ, Zhang WG, Chen XL, Liu LM. Int J Mol Sci; 2019 Apr 24; 20(8):. PubMed ID: 31022947 [Abstract] [Full Text] [Related]
5. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Shi F, Li K, Huan X, Wang X. Appl Biochem Biotechnol; 2013 Sep 24; 171(2):504-21. PubMed ID: 23868449 [Abstract] [Full Text] [Related]
8. CRISPR-Cpf1-Assisted Engineering of Corynebacterium glutamicum SNK118 for Enhanced L-Ornithine Production by NADP-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase and NADH-Dependent Glutamate Dehydrogenase. Dong J, Kan B, Liu H, Zhan M, Wang S, Xu G, Han R, Ni Y. Appl Biochem Biotechnol; 2020 Jul 24; 191(3):955-967. PubMed ID: 31950445 [Abstract] [Full Text] [Related]
9. Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. Jiang LY, Zhang YY, Li Z, Liu JZ. J Ind Microbiol Biotechnol; 2013 Oct 24; 40(10):1143-51. PubMed ID: 23836141 [Abstract] [Full Text] [Related]
10. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve l-isoleucine production. Ma W, Wang J, Li Y, Hu X, Shi F, Wang X. Biotechnol Appl Biochem; 2016 Nov 24; 63(6):877-885. PubMed ID: 27010514 [Abstract] [Full Text] [Related]
11. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Li Y, Cong H, Liu B, Song J, Sun X, Zhang J, Yang Q. Antonie Van Leeuwenhoek; 2016 Sep 24; 109(9):1185-97. PubMed ID: 27255137 [Abstract] [Full Text] [Related]
12. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Xu J, Han M, Zhang J, Guo Y, Zhang W. Amino Acids; 2014 Sep 24; 46(9):2165-75. PubMed ID: 24879631 [Abstract] [Full Text] [Related]
14. Changes of pentose phosphate pathway flux in vivo in Corynebacterium glutamicum during leucine-limited batch cultivation as determined from intracellular metabolite concentration measurements. Moritz B, Striegel K, de Graaf AA, Sahm H. Metab Eng; 2002 Oct 24; 4(4):295-305. PubMed ID: 12646324 [Abstract] [Full Text] [Related]
18. l-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene. Takeno S, Hori K, Ohtani S, Mimura A, Mitsuhashi S, Ikeda M. Metab Eng; 2016 Sep 24; 37():1-10. PubMed ID: 27044449 [Abstract] [Full Text] [Related]