These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
220 related items for PubMed ID: 35926626
1. Electrochemical aptasensor based on the target-induced strand displacement strategy-driven for T-2 toxin detection. Zhang Y, He B, Zhao R, Bai C, Zhang Y, Jin H, Wei M, Ren W, Suo Z, Xu Y. Sci Total Environ; 2022 Nov 25; 849():157769. PubMed ID: 35926626 [Abstract] [Full Text] [Related]
2. Electrochemical aptasensor based on Ce3NbO7/CeO2@Au hollow nanospheres by using Nb.BbvCI-triggered and bipedal DNA walker amplification strategy for zearalenone detection. Yan H, He B, Zhao R, Ren W, Suo Z, Xu Y, Zhang Y, Bai C, Yan H, Liu R. J Hazard Mater; 2022 Sep 15; 438():129491. PubMed ID: 35785741 [Abstract] [Full Text] [Related]
3. An aptasensor for cadmium ions detection based on PEI-MoS2@Au NPs 3D flower-like nanocomposites and Thi-PtPd NPs core-shell sphere. Li M, He B, Yan H, Xie L, Cao X, Jin H, Wei M, Ren W, Suo Z, Xu Y. Anal Chim Acta; 2022 Nov 01; 1232():340470. PubMed ID: 36257744 [Abstract] [Full Text] [Related]
4. FeMOF-based nanostructured platforms for T-2 toxin detection in beer by a "fence-type" aptasensing principle. Wang L, Lu X, Zhao R, Qu Z, He B. Anal Bioanal Chem; 2022 Nov 01; 414(28):7999-8008. PubMed ID: 36114854 [Abstract] [Full Text] [Related]
5. A novel sandwich aptasensor for detecting T-2 toxin based on rGO-TEPA-Au@Pt nanorods with a dual signal amplification strategy. Zhong H, Yu C, Gao R, Chen J, Yu Y, Geng Y, Wen Y, He J. Biosens Bioelectron; 2019 Nov 01; 144():111635. PubMed ID: 31513958 [Abstract] [Full Text] [Related]
6. An electrochemical aptasensor based on PEI-C3N4/AuNWs for determination of chloramphenicol via exonuclease-assisted signal amplification. He B, Wang S. Mikrochim Acta; 2021 Jan 06; 188(1):22. PubMed ID: 33404928 [Abstract] [Full Text] [Related]
7. Tetrahedral DNA Nanostructure-Engineered Paper-Based Electrochemical Aptasensor for Fumonisin B1 Detection Coupled with Au@Pt Nanocrystals as an Amplification Label. Zhang X, Li Z, Hong L, Wang X, Cao J. J Agric Food Chem; 2023 Dec 06; 71(48):19121-19128. PubMed ID: 38009689 [Abstract] [Full Text] [Related]
8. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Jin H, Zhao C, Gui R, Gao X, Wang Z. Anal Chim Acta; 2018 Sep 26; 1025():154-162. PubMed ID: 29801604 [Abstract] [Full Text] [Related]
10. Synthesis and electrocatalytic effect of Ag@Pt core-shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor. Mazloum-Ardakani M, Hosseinzadeh L, Taleat Z. Biosens Bioelectron; 2015 Dec 15; 74():30-6. PubMed ID: 26094037 [Abstract] [Full Text] [Related]
11. Mn2+-Triggered Swing-Arm Robot Strategy Using Anemone-Like Thi@AuPd@Cu-MOFs as Signaling Probes for the Detection of T-2 Toxin. Zhang Y, He B, Wang Y, Wang J, Liang Y, Jin H, Wei M, Ren W, Suo Z, Xu Y. Anal Chem; 2024 Jan 09; 96(1):92-101. PubMed ID: 38110328 [Abstract] [Full Text] [Related]
12. A novel electrochemical aptasensor based on AgPdNPs/PEI-GO and hollow nanobox-like Pt@Ni-CoHNBs for procymidone detection. Wang R, He B, Wang Y, Liu Y, Liang Z, Jin H, Wei M, Ren W, Suo Z, Xu Y. Bioelectrochemistry; 2024 Aug 09; 158():108728. PubMed ID: 38733721 [Abstract] [Full Text] [Related]
13. Electrochemical aptasensor for ultrasensitive detection of lipopolysaccharide using silver nanoparticles decorated titanium dioxide nanotube/functionalized reduced graphene oxide as a new redox nanoprobe. Tian J, Mu Z, Wang J, Zhou J, Yuan Y, Bai L. Mikrochim Acta; 2021 Jan 07; 188(2):31. PubMed ID: 33415459 [Abstract] [Full Text] [Related]
14. A sandwich-type electrochemical aptasensor for the carcinoembryonic antigen via biocatalytic precipitation amplification and by using gold nanoparticle composites. Xu L, Liu Z, Lei S, Huang D, Zou L, Ye B. Mikrochim Acta; 2019 Jun 26; 186(7):473. PubMed ID: 31243610 [Abstract] [Full Text] [Related]
15. Ultrasensitive Aptasensing Platform for the Detection of β-Amyloid-42 Peptide Based on MOF Containing Bimetallic Porphyrin Graphene Oxide and Gold Nanoparticles. Vajedi FS, Rasoolzadeh R, Angnes L, Santos ECS, Silva LPC. ACS Appl Bio Mater; 2024 Apr 15; 7(4):2218-2239. PubMed ID: 38527228 [Abstract] [Full Text] [Related]
16. A label-free electrochemical immunosensing platform based on PEI-rGO/Pt@Au NRs for rapid and sensitive detection of zearalenone. Yan H, He B, Ren W, Suo Z, Xu Y, Xie L, Li L, Yang J, Liu R. Bioelectrochemistry; 2022 Feb 15; 143():107955. PubMed ID: 34607261 [Abstract] [Full Text] [Related]
17. Amplified electrochemical antibiotic aptasensing based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework. Zhang Y, Li B, Wei X, Gu Q, Chen M, Zhang J, Mo S, Wang J, Xue L, Ding Y, Wu Q. Mikrochim Acta; 2021 Aug 04; 188(8):286. PubMed ID: 34345968 [Abstract] [Full Text] [Related]
18. Design and fabrication of a label-free aptasensor for rapid and sensitive detection of endoglucanase. Fatemi F. Int J Biol Macromol; 2020 Apr 01; 148():276-283. PubMed ID: 31923498 [Abstract] [Full Text] [Related]
19. A "signal off" aptasensor based on NiFe2O4 NTs and Au@Pt NRs for the detection of deoxynivalenol via voltammetry. He B, Wang K. Mikrochim Acta; 2021 Jan 06; 188(1):23. PubMed ID: 33404751 [Abstract] [Full Text] [Related]
20. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Chen W, Yan C, Cheng L, Yao L, Xue F, Xu J. Biosens Bioelectron; 2018 Oct 15; 117():845-851. PubMed ID: 30096739 [Abstract] [Full Text] [Related] Page: [Next] [New Search]