These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
109 related items for PubMed ID: 35929269
1. Promoting keratocyte stem like cell proliferation and differentiation by aligned polycaprolactone-silk fibroin fibers containing Aloe vera. Salehi AOM, Keshel SH, Rafienia M, Nourbakhsh MS, Baradaran-Rafii A. Biomater Adv; 2022 Jun; 137():212840. PubMed ID: 35929269 [Abstract] [Full Text] [Related]
2. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. Shanmugavel S, Reddy VJ, Ramakrishna S, Lakshmi BS, Dev VG. J Biomater Appl; 2014 Jul; 29(1):46-58. PubMed ID: 24287981 [Abstract] [Full Text] [Related]
4. Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Bhaarathy V, Venugopal J, Gandhimathi C, Ponpandian N, Mangalaraj D, Ramakrishna S. Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706 [Abstract] [Full Text] [Related]
5. Biocompatible Aloe vera and Tetracycline Hydrochloride Loaded Hybrid Nanofibrous Scaffolds for Skin Tissue Engineering. Ezhilarasu H, Ramalingam R, Dhand C, Lakshminarayanan R, Sadiq A, Gandhimathi C, Ramakrishna S, Bay BH, Venugopal JR, Srinivasan DK. Int J Mol Sci; 2019 Oct 18; 20(20):. PubMed ID: 31635374 [Abstract] [Full Text] [Related]
6. Understanding the cellular response of human tenon fibroblast on polycaprolactone-Aloe vera blend fiber. Gopal D, Ramani M, George R, Janakiraman N. J Biomater Appl; 2022 Sep 18; 37(3):375-388. PubMed ID: 35446716 [Abstract] [Full Text] [Related]
13. Effects of Fiber Alignment and Coculture with Endothelial Cells on Osteogenic Differentiation of Mesenchymal Stromal Cells. Yao T, Chen H, Baker MB, Moroni L. Tissue Eng Part C Methods; 2020 Jan 18; 26(1):11-22. PubMed ID: 31774033 [Abstract] [Full Text] [Related]
15. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z, Lin M, Xie Q, Sun H, Huang Y, Zhang D, Yu Z, Bi X, Chen J, Wang J, Shi W, Gu P, Fan X. Int J Nanomedicine; 2016 Jan 18; 11():1483-500. PubMed ID: 27114708 [Abstract] [Full Text] [Related]
16. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide. Wu J, Zheng A, Liu Y, Jiao D, Zeng D, Wang X, Cao L, Jiang X. Int J Nanomedicine; 2019 Jan 18; 14():733-751. PubMed ID: 30705589 [Abstract] [Full Text] [Related]
17. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering. Bhattacharjee P, Kundu B, Naskar D, Kim HW, Bhattacharya D, Maiti TK, Kundu SC. Cell Tissue Res; 2016 Feb 18; 363(2):525-40. PubMed ID: 26174955 [Abstract] [Full Text] [Related]
19. Zn-substituted Mg2SiO4 nanoparticles-incorporated PCL-silk fibroin composite scaffold: A multifunctional platform towards bone tissue regeneration. Bigham A, Salehi AOM, Rafienia M, Salamat MR, Rahmati S, Raucci MG, Ambrosio L. Mater Sci Eng C Mater Biol Appl; 2021 Aug 18; 127():112242. PubMed ID: 34225882 [Abstract] [Full Text] [Related]
20. Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation. Cengiz IF, Pereira H, Espregueira-Mendes J, Kwon IK, Reis RL, Oliveira JM. J Mater Sci Mater Med; 2019 May 24; 30(6):63. PubMed ID: 31127379 [Abstract] [Full Text] [Related] Page: [Next] [New Search]