These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
142 related items for PubMed ID: 35941686
1. An ensemble-based drug-target interaction prediction approach using multiple feature information with data balancing. El-Behery H, Attia AF, El-Fishawy N, Torkey H. J Biol Eng; 2022 Aug 08; 16(1):21. PubMed ID: 35941686 [Abstract] [Full Text] [Related]
2. DeepStack-DTIs: Predicting Drug-Target Interactions Using LightGBM Feature Selection and Deep-Stacked Ensemble Classifier. Zhang Y, Jiang Z, Chen C, Wei Q, Gu H, Yu B. Interdiscip Sci; 2022 Jun 08; 14(2):311-330. PubMed ID: 34731411 [Abstract] [Full Text] [Related]
5. Predicting Drug-Target Interactions Based on the Ensemble Models of Multiple Feature Pairs. Wang C, Zhang J, Chen P, Wang B. Int J Mol Sci; 2021 Jun 20; 22(12):. PubMed ID: 34202954 [Abstract] [Full Text] [Related]
7. Predicting drug-target interaction network using deep learning model. You J, McLeod RD, Hu P. Comput Biol Chem; 2019 Jun 20; 80():90-101. PubMed ID: 30939415 [Abstract] [Full Text] [Related]
8. BE-DTI': Ensemble framework for drug target interaction prediction using dimensionality reduction and active learning. Sharma A, Rani R. Comput Methods Programs Biomed; 2018 Oct 20; 165():151-162. PubMed ID: 30337070 [Abstract] [Full Text] [Related]
9. Predicting drug-target interactions using restricted Boltzmann machines. Wang Y, Zeng J. Bioinformatics; 2013 Jul 01; 29(13):i126-34. PubMed ID: 23812976 [Abstract] [Full Text] [Related]
10. Improving prediction of drug-target interactions based on fusing multiple features with data balancing and feature selection techniques. Khojasteh H, Pirgazi J, Ghanbari Sorkhi A. PLoS One; 2023 Jul 01; 18(8):e0288173. PubMed ID: 37535616 [Abstract] [Full Text] [Related]
12. An efficient computational method for predicting drug-target interactions using weighted extreme learning machine and speed up robot features. An JY, Meng FR, Yan ZJ. BioData Min; 2021 Jan 20; 14(1):3. PubMed ID: 33472664 [Abstract] [Full Text] [Related]
13. SSELM-neg: spherical search-based extreme learning machine for drug-target interaction prediction. Hu L, Fu C, Ren Z, Cai Y, Yang J, Xu S, Xu W, Tang D. BMC Bioinformatics; 2023 Feb 03; 24(1):38. PubMed ID: 36737694 [Abstract] [Full Text] [Related]
14. Identification of human drug targets using machine-learning algorithms. Kumari P, Nath A, Chaube R. Comput Biol Med; 2015 Jan 03; 56():175-81. PubMed ID: 25437231 [Abstract] [Full Text] [Related]
15. DeepACTION: A deep learning-based method for predicting novel drug-target interactions. Hasan Mahmud SM, Chen W, Jahan H, Dai B, Din SU, Dzisoo AM. Anal Biochem; 2020 Dec 01; 610():113978. PubMed ID: 33035462 [Abstract] [Full Text] [Related]
16. Drug-Target Interaction Prediction Based on Drug Fingerprint Information and Protein Sequence. Li Y, Huang YA, You ZH, Li LP, Wang Z. Molecules; 2019 Aug 19; 24(16):. PubMed ID: 31430892 [Abstract] [Full Text] [Related]
17. Ensemble Learning Prediction of Drug-Target Interactions Using GIST Descriptor Extracted from PSSM-Based Evolutionary Information. Zhan X, You Z, Yu C, Li L, Pan J. Biomed Res Int; 2020 Aug 19; 2020():4516250. PubMed ID: 32908888 [Abstract] [Full Text] [Related]
18. A Machine Learning-Based Biological Drug-Target Interaction Prediction Method for a Tripartite Heterogeneous Network. Zheng Y, Wu Z. ACS Omega; 2021 Feb 02; 6(4):3037-3045. PubMed ID: 33553921 [Abstract] [Full Text] [Related]
19. Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals. Hu J. Front Comput Neurosci; 2017 Feb 02; 11():72. PubMed ID: 28824409 [Abstract] [Full Text] [Related]
20. Accurate prediction of potential druggable proteins based on genetic algorithm and Bagging-SVM ensemble classifier. Lin J, Chen H, Li S, Liu Y, Li X, Yu B. Artif Intell Med; 2019 Jul 02; 98():35-47. PubMed ID: 31521251 [Abstract] [Full Text] [Related] Page: [Next] [New Search]