These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1020 related items for PubMed ID: 35943767
21. Prediction of 28-Day All-Cause Mortality in Heart Failure Patients with Clostridioides difficile Infection Using Machine Learning Models: Evidence from the MIMIC-IV Database. Shi C, Jie Q, Zhang H, Zhang X, Chu W, Chen C, Zhang Q, Hu Z. Cardiology; 2024 Aug 17; ():1. PubMed ID: 39154641 [Abstract] [Full Text] [Related]
22. Factor analysis based on SHapley Additive exPlanations for sepsis-associated encephalopathy in ICU mortality prediction using XGBoost - a retrospective study based on two large database. Guo J, Cheng H, Wang Z, Qiao M, Li J, Lyu J. Front Neurol; 2023 Aug 17; 14():1290117. PubMed ID: 38162445 [Abstract] [Full Text] [Related]
23. Early Prediction of Cardiac Arrest in the Intensive Care Unit Using Explainable Machine Learning: Retrospective Study. Kim YK, Seo WD, Lee SJ, Koo JH, Kim GC, Song HS, Lee M. J Med Internet Res; 2024 Sep 17; 26():e62890. PubMed ID: 39288404 [Abstract] [Full Text] [Related]
26. Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study. Hu C, Li L, Huang W, Wu T, Xu Q, Liu J, Hu B. Infect Dis Ther; 2022 Jun 17; 11(3):1117-1132. PubMed ID: 35399146 [Abstract] [Full Text] [Related]
29. Application of interpretable machine learning for early prediction of prognosis in acute kidney injury. Hu C, Tan Q, Zhang Q, Li Y, Wang F, Zou X, Peng Z. Comput Struct Biotechnol J; 2022 Jun 17; 20():2861-2870. PubMed ID: 35765651 [Abstract] [Full Text] [Related]
30. Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation. Liu X, Hu P, Yeung W, Zhang Z, Ho V, Liu C, Dumontier C, Thoral PJ, Mao Z, Cao D, Mark RG, Zhang Z, Feng M, Li D, Celi LA. Lancet Digit Health; 2023 Oct 17; 5(10):e657-e667. PubMed ID: 37599147 [Abstract] [Full Text] [Related]
31. Explainable machine learning model to predict refeeding hypophosphatemia. Choi TY, Chang MY, Heo S, Jang JY. Clin Nutr ESPEN; 2021 Oct 17; 45():213-219. PubMed ID: 34620320 [Abstract] [Full Text] [Related]
33. An interpretable machine learning model for predicting 28-day mortality in patients with sepsis-associated liver injury. Wen C, Zhang X, Li Y, Xiao W, Hu Q, Lei X, Xu T, Liang S, Gao X, Zhang C, Yu Z, Lü M. PLoS One; 2024 Oct 17; 19(5):e0303469. PubMed ID: 38768153 [Abstract] [Full Text] [Related]
35. SHAP based predictive modeling for 1 year all-cause readmission risk in elderly heart failure patients: feature selection and model interpretation. Luo H, Xiang C, Zeng L, Li S, Mei X, Xiong L, Liu Y, Wen C, Cui Y, Du L, Zhou Y, Wang K, Li L, Liu Z, Wu Q, Pu J, Yue R. Sci Rep; 2024 Jul 31; 14(1):17728. PubMed ID: 39085442 [Abstract] [Full Text] [Related]
36. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study. Li M, Han S, Liang F, Hu C, Zhang B, Hou Q, Zhao S. J Med Internet Res; 2024 May 01; 26():e51354. PubMed ID: 38691403 [Abstract] [Full Text] [Related]