These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


209 related items for PubMed ID: 35946348

  • 21. The developmental transcriptome for Lytechinus variegatus exhibits temporally punctuated gene expression changes.
    Hogan JD, Keenan JL, Luo L, Ibn-Salem J, Lamba A, Schatzberg D, Piacentino ML, Zuch DT, Core AB, Blumberg C, Timmermann B, Grau JH, Speranza E, Andrade-Navarro MA, Irie N, Poustka AJ, Bradham CA.
    Dev Biol; 2020 Apr 15; 460(2):139-154. PubMed ID: 31816285
    [Abstract] [Full Text] [Related]

  • 22. Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins.
    Hinman VF, Nguyen A, Davidson EH.
    Dev Biol; 2007 Dec 15; 312(2):584-95. PubMed ID: 17956756
    [Abstract] [Full Text] [Related]

  • 23. Regulatory punctuated equilibrium and convergence in the evolution of developmental pathways in direct-developing sea urchins.
    Raff EC, Popodi EM, Kauffman JS, Sly BJ, Turner FR, Morris VB, Raff RA.
    Evol Dev; 2003 Dec 15; 5(5):478-93. PubMed ID: 12950627
    [Abstract] [Full Text] [Related]

  • 24. Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution.
    Ettensohn CA, Guerrero-Santoro J, Khor JM.
    Curr Top Dev Biol; 2022 Dec 15; 146():113-148. PubMed ID: 35152981
    [Abstract] [Full Text] [Related]

  • 25. Mechanisms of evolutionary changes in timing, spatial expression, and mRNA processing in the msp130 gene in a direct-developing sea urchin, Heliocidaris erythrogramma.
    Klueg KM, Harkey MA, Raff RA.
    Dev Biol; 1997 Feb 01; 182(1):121-33. PubMed ID: 9028919
    [Abstract] [Full Text] [Related]

  • 26. Architecture and evolution of the cis-regulatory system of the echinoderm kirrelL gene.
    Khor JM, Ettensohn CA.
    Elife; 2022 Feb 25; 11():. PubMed ID: 35212624
    [Abstract] [Full Text] [Related]

  • 27. The genomic regulatory control of skeletal morphogenesis in the sea urchin.
    Rafiq K, Cheers MS, Ettensohn CA.
    Development; 2012 Feb 25; 139(3):579-90. PubMed ID: 22190640
    [Abstract] [Full Text] [Related]

  • 28. Co-option and dissociation in larval origins and evolution: the sea urchin larval gut.
    Love AC, Lee AE, Andrews ME, Raff RA.
    Evol Dev; 2008 Feb 25; 10(1):74-88. PubMed ID: 18184359
    [Abstract] [Full Text] [Related]

  • 29. Widespread priming of transcriptional regulatory elements by incipient accessibility or RNA polymerase II pause in early embryos of the sea urchin Strongylocentrotus purpuratus.
    Arenas-Mena C, Akin S.
    Genetics; 2023 Oct 04; 225(2):. PubMed ID: 37551428
    [Abstract] [Full Text] [Related]

  • 30. Nodal expression and heterochrony in the evolution of dorsal-ventral and left-right axes formation in the direct-developing sea urchin Heliocidaris erythrogramma.
    Smith MS, Turner FR, Raff RA.
    J Exp Zool B Mol Dev Evol; 2008 Dec 15; 310(8):609-22. PubMed ID: 18702078
    [Abstract] [Full Text] [Related]

  • 31. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins.
    Rafiq K, Shashikant T, McManus CJ, Ettensohn CA.
    Development; 2014 Feb 15; 141(4):950-61. PubMed ID: 24496631
    [Abstract] [Full Text] [Related]

  • 32. Integrative multi-omics increase resolution of the sea urchin posterior gut gene regulatory network at single-cell level.
    Voronov D, Paganos P, Magri MS, Cuomo C, Maeso I, Gómez-Skarmeta JL, Arnone MI.
    Development; 2024 Aug 15; 151(16):. PubMed ID: 39058236
    [Abstract] [Full Text] [Related]

  • 33. ATAC-Seq for Assaying Chromatin Accessibility Protocol Using Echinoderm Embryos.
    Magri MS, Voronov D, Ranđelović J, Cuomo C, Gómez-Skarmeta JL, Arnone MI.
    Methods Mol Biol; 2021 Aug 15; 2219():253-265. PubMed ID: 33074546
    [Abstract] [Full Text] [Related]

  • 34. Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation.
    Romano LA, Wray GA.
    Development; 2003 Sep 15; 130(17):4187-99. PubMed ID: 12874137
    [Abstract] [Full Text] [Related]

  • 35. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms.
    Shashikant T, Khor JM, Ettensohn CA.
    Genesis; 2018 Oct 15; 56(10):e23253. PubMed ID: 30264451
    [Abstract] [Full Text] [Related]

  • 36. Direct-developing sea urchins and the evolutionary reorganization of early development.
    Raff RA.
    Bioessays; 1992 Apr 15; 14(4):211-8. PubMed ID: 1596270
    [Abstract] [Full Text] [Related]

  • 37. Adaptive evolution of bindin in the genus Heliocidaris is correlated with the shift to direct development.
    Zigler KS, Raff EC, Popodi E, Raff RA, Lessios HA.
    Evolution; 2003 Oct 15; 57(10):2293-302. PubMed ID: 14628917
    [Abstract] [Full Text] [Related]

  • 38. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.
    Hinman VF, Nguyen AT, Cameron RA, Davidson EH.
    Proc Natl Acad Sci U S A; 2003 Nov 11; 100(23):13356-61. PubMed ID: 14595011
    [Abstract] [Full Text] [Related]

  • 39. Creation of cis-regulatory elements during sea urchin evolution by co-option and optimization of a repetitive sequence adjacent to the spec2a gene.
    Dayal S, Kiyama T, Villinski JT, Zhang N, Liang S, Klein WH.
    Dev Biol; 2004 Sep 15; 273(2):436-53. PubMed ID: 15328024
    [Abstract] [Full Text] [Related]

  • 40. Patterning mechanisms in the evolution of derived developmental life histories: the role of Wnt signaling in axis formation of the direct-developing sea urchin Heliocidaris erythrogramma.
    Kauffman JS, Raff RA.
    Dev Genes Evol; 2003 Dec 15; 213(12):612-24. PubMed ID: 14618401
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.