These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


371 related items for PubMed ID: 35952346

  • 1. Myonuclear addition is associated with sex-specific fiber hypertrophy and occurs in relation to fiber perimeter not cross-sectional area.
    Moesgaard L, Jessen S, Mackey AL, Hostrup M.
    J Appl Physiol (1985); 2022 Sep 01; 133(3):732-741. PubMed ID: 35952346
    [Abstract] [Full Text] [Related]

  • 2. Satellite cell and myonuclear accretion is related to training-induced skeletal muscle fiber hypertrophy in young males and females.
    Abou Sawan S, Hodson N, Babits P, Malowany JM, Kumbhare D, Moore DR.
    J Appl Physiol (1985); 2021 Sep 01; 131(3):871-880. PubMed ID: 34264129
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Resistance exercise training promotes fiber type-specific myonuclear adaptations in older adults.
    Moro T, Brightwell CR, Volpi E, Rasmussen BB, Fry CS.
    J Appl Physiol (1985); 2020 Apr 01; 128(4):795-804. PubMed ID: 32134710
    [Abstract] [Full Text] [Related]

  • 5. Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis.
    Petrella JK, Kim JS, Mayhew DL, Cross JM, Bamman MM.
    J Appl Physiol (1985); 2008 Jun 01; 104(6):1736-42. PubMed ID: 18436694
    [Abstract] [Full Text] [Related]

  • 6. Limited effect of over-the-counter doses of ibuprofen on mechanisms regulating muscle hypertrophy during resistance training in young adults.
    Lilja M, Moberg M, Apró W, Martínez-Aranda LM, Rundqvist H, Langlet B, Gustafsson T, Lundberg TR.
    J Appl Physiol (1985); 2023 Mar 01; 134(3):753-765. PubMed ID: 36794689
    [Abstract] [Full Text] [Related]

  • 7. Changes in myonuclear domain size do not precede muscle hypertrophy during prolonged resistance-type exercise training.
    Snijders T, Smeets JS, van Kranenburg J, Kies AK, van Loon LJ, Verdijk LB.
    Acta Physiol (Oxf); 2016 Feb 01; 216(2):231-9. PubMed ID: 26407634
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. The effect of resistance training, detraining and retraining on muscle strength and power, myofibre size, satellite cells and myonuclei in older men.
    Blocquiaux S, Gorski T, Van Roie E, Ramaekers M, Van Thienen R, Nielens H, Delecluse C, De Bock K, Thomis M.
    Exp Gerontol; 2020 May 01; 133():110860. PubMed ID: 32017951
    [Abstract] [Full Text] [Related]

  • 10. Muscle Fiber Hypertrophy and Myonuclei Addition: A Systematic Review and Meta-analysis.
    Conceição MS, Vechin FC, Lixandrão M, Damas F, Libardi CA, Tricoli V, Roschel H, Camera D, Ugrinowitsch C.
    Med Sci Sports Exerc; 2018 Jul 01; 50(7):1385-1393. PubMed ID: 29509639
    [Abstract] [Full Text] [Related]

  • 11. Protein Supplementation Does Not Affect Myogenic Adaptations to Resistance Training.
    Reidy PT, Fry CS, Igbinigie S, Deer RR, Jennings K, Cope MB, Mukherjea R, Volpi E, Rasmussen BB.
    Med Sci Sports Exerc; 2017 Jun 01; 49(6):1197-1208. PubMed ID: 28346813
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Delayed myonuclear addition, myofiber hypertrophy, and increases in strength with high-frequency low-load blood flow restricted training to volitional failure.
    Bjørnsen T, Wernbom M, Løvstad A, Paulsen G, D'Souza RF, Cameron-Smith D, Flesche A, Hisdal J, Berntsen S, Raastad T.
    J Appl Physiol (1985); 2019 Mar 01; 126(3):578-592. PubMed ID: 30543499
    [Abstract] [Full Text] [Related]

  • 15. Effects of alternating blood flow restricted training and heavy-load resistance training on myofiber morphology and mechanical muscle function.
    Hansen SK, Ratzer J, Nielsen JL, Suetta C, Karlsen A, Kvorning T, Frandsen U, Aagaard P.
    J Appl Physiol (1985); 2020 Jun 01; 128(6):1523-1532. PubMed ID: 32324471
    [Abstract] [Full Text] [Related]

  • 16. Low-load blood flow-restricted resistance exercise produces fiber type-independent hypertrophy and improves muscle functional capacity in older individuals.
    Wang J, Mogensen AG, Thybo F, Brandbyge M, Brorson J, van Hall G, Agergaard J, de Paoli FV, Miller BF, Bøtker HE, Farup J, Vissing K.
    J Appl Physiol (1985); 2023 Apr 01; 134(4):1047-1062. PubMed ID: 36825645
    [Abstract] [Full Text] [Related]

  • 17. Myofiber hypertrophy adaptations following 6 weeks of low-load resistance training with blood flow restriction in untrained males and females.
    Reece TM, Godwin JS, Strube MJ, Ciccone AB, Stout KW, Pearson JR, Vopat BG, Gallagher PM, Roberts MD, Herda TJ.
    J Appl Physiol (1985); 2023 May 01; 134(5):1240-1255. PubMed ID: 37022967
    [Abstract] [Full Text] [Related]

  • 18. Automated cross-sectional analysis of trained, severely atrophied, and recovering rat skeletal muscles using MyoVision 2.0.
    Viggars MR, Wen Y, Peterson CA, Jarvis JC.
    J Appl Physiol (1985); 2022 Mar 01; 132(3):593-610. PubMed ID: 35050795
    [Abstract] [Full Text] [Related]

  • 19. Variability in vastus lateralis fiber type distribution, fiber size, and myonuclear content along and between the legs.
    Horwath O, Envall H, Röja J, Emanuelsson EB, Sanz G, Ekblom B, Apró W, Moberg M.
    J Appl Physiol (1985); 2021 Jul 01; 131(1):158-173. PubMed ID: 34013752
    [Abstract] [Full Text] [Related]

  • 20. Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women.
    Petrella JK, Kim JS, Cross JM, Kosek DJ, Bamman MM.
    Am J Physiol Endocrinol Metab; 2006 Nov 01; 291(5):E937-46. PubMed ID: 16772322
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.