These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 35953749

  • 21. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi.
    Gu L, Zhao M, Ge M, Zhu S, Cheng B, Li X.
    Ecotoxicol Environ Saf; 2019 Dec 30; 186():109744. PubMed ID: 31627093
    [Abstract] [Full Text] [Related]

  • 22. Multifunctional Roles of Zinc in Cadmium Transport in Soil-Rice Systems: Novel Insights from Stable Isotope Fractionation and Gene Expression.
    Zhong S, Li X, Fang L, Bai J, Gao R, Huang Y, Huang Y, Liu Y, Liu C, Yin H, Liu T, Huang F, Li F.
    Environ Sci Technol; 2024 Jul 16; 58(28):12467-12476. PubMed ID: 38966939
    [Abstract] [Full Text] [Related]

  • 23. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa).
    Tian S, Liang S, Qiao K, Wang F, Zhang Y, Chai T.
    J Hazard Mater; 2019 Dec 15; 380():120853. PubMed ID: 31279944
    [Abstract] [Full Text] [Related]

  • 24. Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels.
    Vivas A, Vörös I, Biró B, Campos E, Barea JM, Azcón R.
    Environ Pollut; 2003 Dec 15; 126(2):179-89. PubMed ID: 12927489
    [Abstract] [Full Text] [Related]

  • 25. Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.).
    Treesubsuntorn C, Dhurakit P, Khaksar G, Thiravetyan P.
    Environ Sci Pollut Res Int; 2018 Sep 15; 25(26):25690-25701. PubMed ID: 28480489
    [Abstract] [Full Text] [Related]

  • 26. Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil.
    Vivas A, Barea JM, Biró B, Azcón R.
    J Appl Microbiol; 2006 Mar 15; 100(3):587-98. PubMed ID: 16478498
    [Abstract] [Full Text] [Related]

  • 27. [Effects of Sedum plumbizincicola--Oryza sativa rotation and phosphate amendment on Cd and Zn uptake by O. sativa].
    Shen LB, Wu LH, Tan WN, Han XR, Luo YM, Ouyang YN, Jin QY, Jiang YG.
    Ying Yong Sheng Tai Xue Bao; 2010 Nov 15; 21(11):2952-8. PubMed ID: 21361023
    [Abstract] [Full Text] [Related]

  • 28. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice?
    Li H, Luo N, Zhang LJ, Zhao HM, Li YW, Cai QY, Wong MH, Mo CH.
    Sci Total Environ; 2016 Nov 15; 571():1183-90. PubMed ID: 27450963
    [Abstract] [Full Text] [Related]

  • 29. A non-toxic polymer enhances sorghum-mycorrhiza symbiosis for bioremediation of Cd.
    Babadi M, Zalaghi R, Taghavi M.
    Mycorrhiza; 2019 Jul 15; 29(4):375-387. PubMed ID: 31227910
    [Abstract] [Full Text] [Related]

  • 30. Synergistic effects of combined application of biochar and arbuscular mycorrhizal fungi on the safe production of rice in cadmium contaminated soil.
    Zhao T, Wang L, Yang J.
    Sci Total Environ; 2024 Nov 15; 951():175499. PubMed ID: 39151618
    [Abstract] [Full Text] [Related]

  • 31. Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake.
    Cai Y, Xu W, Wang M, Chen W, Li X, Li Y, Cai Y.
    Environ Pollut; 2019 Oct 15; 253():959-965. PubMed ID: 31351304
    [Abstract] [Full Text] [Related]

  • 32. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L.
    Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostino A, Sgorbati S, Berta G.
    Chemosphere; 2005 Mar 15; 59(1):21-9. PubMed ID: 15698640
    [Abstract] [Full Text] [Related]

  • 33. Foliar application of Zn can reduce Cd concentrations in rice (Oryza sativa L.) under field conditions.
    Wang H, Xu C, Luo ZC, Zhu HH, Wang S, Zhu QH, Huang DY, Zhang YZ, Xiong J, He YB.
    Environ Sci Pollut Res Int; 2018 Oct 15; 25(29):29287-29294. PubMed ID: 30121759
    [Abstract] [Full Text] [Related]

  • 34. Adaptation and tolerance mechanisms developed by mycorrhizal Bipinnula fimbriata plantlets (Orchidaceae) in a heavy metal-polluted ecosystem.
    Herrera H, Valadares R, Oliveira G, Fuentes A, Almonacid L, do Nascimento SV, Bashan Y, Arriagada C.
    Mycorrhiza; 2018 Oct 15; 28(7):651-663. PubMed ID: 30094512
    [Abstract] [Full Text] [Related]

  • 35. Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in Cd-contaminated acidic soil.
    Liu M, Sun J, Li Y, Xiao Y.
    Chemosphere; 2017 Jan 15; 167():204-211. PubMed ID: 27721131
    [Abstract] [Full Text] [Related]

  • 36. Foliar application of aspartic acid lowers cadmium uptake and Cd-induced oxidative stress in rice under Cd stress.
    Rizwan M, Ali S, Zaheer Akbar M, Shakoor MB, Mahmood A, Ishaque W, Hussain A.
    Environ Sci Pollut Res Int; 2017 Sep 15; 24(27):21938-21947. PubMed ID: 28780693
    [Abstract] [Full Text] [Related]

  • 37. A Pseudomonas Plant Growth Promoting Rhizobacterium and Arbuscular Mycorrhiza differentially modulate the growth, photosynthetic performance, nutrients allocation, and stress response mechanisms triggered by a mild Zinc and Cadmium stress in tomato.
    Zhang L, Zuluaga MYA, Pii Y, Barone A, Amaducci S, Miras-Moreno B, Martinelli E, Bellotti G, Trevisan M, Puglisi E, Lucini L.
    Plant Sci; 2023 Dec 15; 337():111873. PubMed ID: 37739018
    [Abstract] [Full Text] [Related]

  • 38. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation.
    Yang Y, Liang Y, Ghosh A, Song Y, Chen H, Tang M.
    Environ Sci Pollut Res Int; 2015 Sep 15; 22(17):13179-93. PubMed ID: 25929455
    [Abstract] [Full Text] [Related]

  • 39. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration.
    Cao ZZ, Qin ML, Lin XY, Zhu ZW, Chen MX.
    Environ Pollut; 2018 Jul 15; 238():76-84. PubMed ID: 29547864
    [Abstract] [Full Text] [Related]

  • 40. Heavy metal tolerance of rice plants (Oryza sativa L.) to some metal oxides at the critical levels.
    Muramoto S.
    J Environ Sci Health B; 1989 Oct 15; 24(5):559-68. PubMed ID: 2600364
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.