These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


330 related items for PubMed ID: 35955636

  • 1. The Promising Nanovectors for Gene Delivery in Plant Genome Engineering.
    Zhi H, Zhou S, Pan W, Shang Y, Zeng Z, Zhang H.
    Int J Mol Sci; 2022 Jul 31; 23(15):. PubMed ID: 35955636
    [Abstract] [Full Text] [Related]

  • 2. Nanotechnology Strategies for Plant Genetic Engineering.
    Yan Y, Zhu X, Yu Y, Li C, Zhang Z, Wang F.
    Adv Mater; 2022 Feb 31; 34(7):e2106945. PubMed ID: 34699644
    [Abstract] [Full Text] [Related]

  • 3. Current and future editing reagent delivery systems for plant genome editing.
    Ran Y, Liang Z, Gao C.
    Sci China Life Sci; 2017 May 31; 60(5):490-505. PubMed ID: 28527114
    [Abstract] [Full Text] [Related]

  • 4. Repurposing Macromolecule Delivery Tools for Plant Genetic Modification in the Era of Precision Genome Engineering.
    Que Q, Chilton MM, Elumalai S, Zhong H, Dong S, Shi L.
    Methods Mol Biol; 2019 May 31; 1864():3-18. PubMed ID: 30415325
    [Abstract] [Full Text] [Related]

  • 5. Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes.
    Liu Q, Zhao C, Sun K, Deng Y, Li Z.
    Mol Plant; 2023 Mar 06; 16(3):616-631. PubMed ID: 36751129
    [Abstract] [Full Text] [Related]

  • 6. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E, Koiso N, Takebayashi A, Ichikawa M, Kiba T, Osakabe K, Osakabe Y, Sakakibara H, Kato N, Okamoto T.
    Nat Plants; 2019 Apr 06; 5(4):363-368. PubMed ID: 30911123
    [Abstract] [Full Text] [Related]

  • 7. Nanotechnology to advance CRISPR-Cas genetic engineering of plants.
    Demirer GS, Silva TN, Jackson CT, Thomas JB, W Ehrhardt D, Rhee SY, Mortimer JC, Landry MP.
    Nat Nanotechnol; 2021 Mar 06; 16(3):243-250. PubMed ID: 33712738
    [Abstract] [Full Text] [Related]

  • 8. Genome editing reagent delivery in plants.
    Ghogare R, Ludwig Y, Bueno GM, Slamet-Loedin IH, Dhingra A.
    Transgenic Res; 2021 Aug 06; 30(4):321-335. PubMed ID: 33728594
    [Abstract] [Full Text] [Related]

  • 9. DNA-free genome editing methods for targeted crop improvement.
    Kanchiswamy CN.
    Plant Cell Rep; 2016 Jul 06; 35(7):1469-74. PubMed ID: 27100964
    [Abstract] [Full Text] [Related]

  • 10. Genome engineering in ornamental plants: Current status and future prospects.
    Kishi-Kaboshi M, Aida R, Sasaki K.
    Plant Physiol Biochem; 2018 Oct 06; 131():47-52. PubMed ID: 29709514
    [Abstract] [Full Text] [Related]

  • 11. Particle bombardment technology and its applications in plants.
    Ozyigit II, Yucebilgili Kurtoglu K.
    Mol Biol Rep; 2020 Dec 06; 47(12):9831-9847. PubMed ID: 33222118
    [Abstract] [Full Text] [Related]

  • 12. Nanoparticle-mediated gene transformation strategies for plant genetic engineering.
    Lv Z, Jiang R, Chen J, Chen W.
    Plant J; 2020 Nov 06; 104(4):880-891. PubMed ID: 32860436
    [Abstract] [Full Text] [Related]

  • 13. Emerging Genome Engineering Tools in Crop Research and Breeding.
    Bilichak A, Gaudet D, Laurie J.
    Methods Mol Biol; 2020 Nov 06; 2072():165-181. PubMed ID: 31541446
    [Abstract] [Full Text] [Related]

  • 14. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R, Hussain K, Nazir S, Javed MR, Masood N.
    Cell Mol Biol (Noisy-le-grand); 2018 Nov 30; 64(14):31-38. PubMed ID: 30511631
    [Abstract] [Full Text] [Related]

  • 15. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants.
    Chennakesavulu K, Singh H, Trivedi PK, Jain M, Yadav SR.
    Plant Cell Rep; 2022 Mar 30; 41(3):815-831. PubMed ID: 33742256
    [Abstract] [Full Text] [Related]

  • 16. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S, Zhang D, Shi J.
    Plant Cell Rep; 2021 Jun 30; 40(6):979-998. PubMed ID: 33977326
    [Abstract] [Full Text] [Related]

  • 17. Carbon Nanotube-Mediated Plasmid DNA Delivery in Rice Leaves and Seeds.
    Dunbar T, Tsakirpaloglou N, Septiningsih EM, Thomson MJ.
    Int J Mol Sci; 2022 Apr 07; 23(8):. PubMed ID: 35456898
    [Abstract] [Full Text] [Related]

  • 18. Plant genome engineering from lab to field-a Keystone Symposia report.
    Cable J, Ronald PC, Voytas D, Zhang F, Levy AA, Takatsuka A, Arimura SI, Jacobsen SE, Toki S, Toda E, Gao C, Zhu JK, Boch J, Van Eck J, Mahfouz M, Andersson M, Fridman E, Weiss T, Wang K, Qi Y, Jores T, Adams T, Bagchi R.
    Ann N Y Acad Sci; 2021 Dec 07; 1506(1):35-54. PubMed ID: 34435370
    [Abstract] [Full Text] [Related]

  • 19. Agrobacterium-mediated delivery of CRISPR/Cas reagents for genome editing in plants enters an era of ternary vector systems.
    Zhang Y, Zhang Q, Chen QJ.
    Sci China Life Sci; 2020 Oct 07; 63(10):1491-1498. PubMed ID: 32279281
    [Abstract] [Full Text] [Related]

  • 20. CRISPR ribonucleoprotein-mediated genetic engineering in plants.
    Zhang Y, Iaffaldano B, Qi Y.
    Plant Commun; 2021 Mar 08; 2(2):100168. PubMed ID: 33898980
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.