These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


310 related items for PubMed ID: 35959528

  • 1. Mesophyll conductance response to short-term changes in pCO2 is related to leaf anatomy and biochemistry in diverse C4 grasses.
    Pathare VS, DiMario RJ, Koteyeva N, Cousins AB.
    New Phytol; 2022 Nov; 236(4):1281-1295. PubMed ID: 35959528
    [Abstract] [Full Text] [Related]

  • 2. Increased adaxial stomatal density is associated with greater mesophyll surface area exposed to intercellular air spaces and mesophyll conductance in diverse C4 grasses.
    Pathare VS, Koteyeva N, Cousins AB.
    New Phytol; 2020 Jan; 225(1):169-182. PubMed ID: 31400232
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Limitation of C4 photosynthesis by low carbonic anhydrase activity increases with temperature but does not influence mesophyll CO2 conductance.
    Crawford JD, Cousins AB.
    J Exp Bot; 2022 Jan 27; 73(3):927-938. PubMed ID: 34698863
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2.
    Pinto H, Sharwood RE, Tissue DT, Ghannoum O.
    J Exp Bot; 2014 Jul 27; 65(13):3669-81. PubMed ID: 24723409
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. C4 grasses adapted to low precipitation habitats show traits related to greater mesophyll conductance and lower leaf hydraulic conductance.
    Pathare VS, Sonawane BV, Koteyeva N, Cousins AB.
    Plant Cell Environ; 2020 Aug 27; 43(8):1897-1910. PubMed ID: 32449181
    [Abstract] [Full Text] [Related]

  • 9. Short-term thermal photosynthetic responses of C4 grasses are independent of the biochemical subtype.
    Sonawane BV, Sharwood RE, von Caemmerer S, Whitney SM, Ghannoum O.
    J Exp Bot; 2017 Nov 28; 68(20):5583-5597. PubMed ID: 29045727
    [Abstract] [Full Text] [Related]

  • 10. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants.
    Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbo M, Tomàs M, Niinemets Ü.
    Plant Cell Environ; 2016 May 28; 39(5):965-82. PubMed ID: 26297108
    [Abstract] [Full Text] [Related]

  • 11. Differences in leaf anatomy determines temperature response of leaf hydraulic and mesophyll CO2 conductance in phylogenetically related C4 and C3 grass species.
    Sonawane BV, Koteyeva NK, Johnson DM, Cousins AB.
    New Phytol; 2021 Jun 28; 230(5):1802-1814. PubMed ID: 33605441
    [Abstract] [Full Text] [Related]

  • 12. The response of mesophyll conductance to short-term variation in CO2 in the C4 plants Setaria viridis and Zea mays.
    Ubierna N, Gandin A, Cousins AB.
    J Exp Bot; 2018 Feb 23; 69(5):1159-1170. PubMed ID: 29474683
    [Abstract] [Full Text] [Related]

  • 13. Photosynthetic flexibility in maize exposed to salinity and shade.
    Sharwood RE, Sonawane BV, Ghannoum O.
    J Exp Bot; 2014 Jul 23; 65(13):3715-24. PubMed ID: 24692650
    [Abstract] [Full Text] [Related]

  • 14. Uncertainties and limitations of using carbon-13 and oxygen-18 leaf isotope exchange to estimate the temperature response of mesophyll CO2 conductance in C3 plants.
    Sonawane BV, Cousins AB.
    New Phytol; 2019 Apr 23; 222(1):122-131. PubMed ID: 30394538
    [Abstract] [Full Text] [Related]

  • 15. Spatial variation in photosynthetic CO(2) carbon and oxygen isotope discrimination along leaves of the monocot triticale (Triticum × Secale) relates to mesophyll conductance and the Péclet effect.
    Kodama N, Cousins A, Tu KP, Barbour MM.
    Plant Cell Environ; 2011 Sep 23; 34(9):1548-62. PubMed ID: 21707646
    [Abstract] [Full Text] [Related]

  • 16. Intracellular position of mitochondria in mesophyll cells differs between C3 and C4 grasses.
    Hatakeyama Y, Ueno O.
    J Plant Res; 2017 Sep 23; 130(5):885-892. PubMed ID: 28434121
    [Abstract] [Full Text] [Related]

  • 17. Leaf anatomy does not explain apparent short-term responses of mesophyll conductance to light and CO2 in tobacco.
    Carriquí M, Douthe C, Molins A, Flexas J.
    Physiol Plant; 2019 Mar 23; 165(3):604-618. PubMed ID: 29744895
    [Abstract] [Full Text] [Related]

  • 18. Temperature Responses of C4 Photosynthesis: Biochemical Analysis of Rubisco, Phosphoenolpyruvate Carboxylase, and Carbonic Anhydrase in Setaria viridis.
    Boyd RA, Gandin A, Cousins AB.
    Plant Physiol; 2015 Nov 23; 169(3):1850-61. PubMed ID: 26373659
    [Abstract] [Full Text] [Related]

  • 19. Diffusion of CO2 across the Mesophyll-Bundle Sheath Cell Interface in a C4 Plant with Genetically Reduced PEP Carboxylase Activity.
    Alonso-Cantabrana H, Cousins AB, Danila F, Ryan T, Sharwood RE, von Caemmerer S, Furbank RT.
    Plant Physiol; 2018 Sep 23; 178(1):72-81. PubMed ID: 30018172
    [Abstract] [Full Text] [Related]

  • 20. The role of leaf width and conductances to CO2 in determining water use efficiency in C4 grasses.
    Cano FJ, Sharwood RE, Cousins AB, Ghannoum O.
    New Phytol; 2019 Aug 23; 223(3):1280-1295. PubMed ID: 31087798
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.