These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
96 related items for PubMed ID: 3597350
1. Chemical replacement of P1' arginine residue at the first reactive site of peanut protease inhibitor B-III. Kurokawa T, Hara S, Norioka S, Teshima T, Ikenaka T. J Biochem; 1987 Mar; 101(3):723-8. PubMed ID: 3597350 [Abstract] [Full Text] [Related]
2. Chemical replacement of P1' serine residue at the second reactive site of soybean protease inhibitor C-II. Kurokawa T, Hara S, Teshima T, Ikenaka T. J Biochem; 1987 Sep; 102(3):621-6. PubMed ID: 3123470 [Abstract] [Full Text] [Related]
3. Conversion of peanut trypsin-chymotrypsin inhibitor B-III to a chymotrypsin inhibitor by deimination of the P1 arginine residues in two reactive sites. Kurokawa T, Hara S, Takahara H, Sugawara K, Ikenaka T. J Biochem; 1987 Jun; 101(6):1361-7. PubMed ID: 3667552 [Abstract] [Full Text] [Related]
4. Amino acid sequence of a trypsin-chymotrypsin inhibitor, B-III, of peanut (Arachis hypogaea). Norioka S, Ikenaka T. J Biochem; 1983 Feb; 93(2):479-85. PubMed ID: 6841347 [Abstract] [Full Text] [Related]
5. Replacement of lysine by arginine, phenylalanine and tryptophan in the reactive site of the bovine trypsin-kallikrein inhibitor (Kunitz) and change of the inhibitory properties. Jering H, Tschesche H. Eur J Biochem; 1976 Jan 15; 61(2):453-63. PubMed ID: 129327 [Abstract] [Full Text] [Related]
6. Engineering the S1' subsite of trypsin: design of a protease which cleaves between dibasic residues. Kurth T, Grahn S, Thormann M, Ullmann D, Hofmann HJ, Jakubke HD, Hedstrom L. Biochemistry; 1998 Aug 18; 37(33):11434-40. PubMed ID: 9708978 [Abstract] [Full Text] [Related]
7. Effects of amino acid replacements around the reactive site of chicken ovomucoid domain 3 on the inhibitory activity toward chymotrypsin and trypsin. Kojima S, Takagi N, Minagawa T, Fushimi N, Miura KI. Protein Eng; 1999 Oct 18; 12(10):857-62. PubMed ID: 10556246 [Abstract] [Full Text] [Related]
8. Chemical substitutions of the reactive site leucine residue in soybean Bowman-Birk proteinase inhibitor with other amino acids. Odani S, Ono T. J Biochem; 1980 Nov 18; 88(5):1555-8. PubMed ID: 7462194 [Abstract] [Full Text] [Related]
9. Participation of S-S loops in inhibitory activity of peanut protease inhibitor B-III. Norioka S, Kurokawa T, Ikenaka T. J Biochem; 1987 Mar 18; 101(3):713-21. PubMed ID: 3597349 [Abstract] [Full Text] [Related]
10. The conserved P1' Ser of Bowman-Birk-type proteinase inhibitors is not essential for the integrity of the reactive site loop. Brauer AB, Leatherbarrow RJ. Biochem Biophys Res Commun; 2003 Aug 22; 308(2):300-5. PubMed ID: 12901868 [Abstract] [Full Text] [Related]
11. Chemical-enzymatic insertion of an amino acid residue in the reactive site of soybean trypsin inhibitor (Kunitz). Kowalski D, Laskowski M. Biochemistry; 1976 Mar 23; 15(6):1309-15. PubMed ID: 1252450 [Abstract] [Full Text] [Related]
12. Design of P1' and P3' residues of trivalent thrombin inhibitors and their crystal structures. Slon-Usakiewicz JJ, Sivaraman J, Li Y, Cygler M, Konishi Y. Biochemistry; 2000 Mar 07; 39(9):2384-91. PubMed ID: 10694407 [Abstract] [Full Text] [Related]
13. Inhibition mechanism of a peanut trypsin-chymotrypsin inhibitor, B-III: determination of the reactive sites for trypsin and chymotrypsin. Norioka S, Ikenaka T. J Biochem; 1984 Oct 07; 96(4):1155-64. PubMed ID: 6520118 [Abstract] [Full Text] [Related]
14. Primary structure of Dioclea glabra trypsin inhibitor, DgTI, a Bowman-Birk inhibitor. Bueno NR, Fritz H, Auerswald EA, Mentele R, Sampaio M, Sampaio CA, Oliva ML. Biochem Biophys Res Commun; 1999 Aug 11; 261(3):838-43. PubMed ID: 10441512 [Abstract] [Full Text] [Related]
15. A unique serpin P1' glutamate and a conserved β-sheet C arginine are key residues for activity, protease recognition and stability of serpinA12 (vaspin). Ulbricht D, Pippel J, Schultz S, Meier R, Sträter N, Heiker JT. Biochem J; 2015 Sep 15; 470(3):357-67. PubMed ID: 26199422 [Abstract] [Full Text] [Related]
16. Examples of peptide-peptoid hybrid serine protease inhibitors based on the trypsin inhibitor SFTI-1 with complete protease resistance at the P1-P1' reactive site. Stawikowski M, Stawikowska R, Jaśkiewicz A, Zabłotna E, Rolka K. Chembiochem; 2005 Jun 15; 6(6):1057-61. PubMed ID: 15883970 [Abstract] [Full Text] [Related]
17. Chymotrypsin inhibitor from Erythrina variegata seeds: involvement of amino acid residues within the primary binding loop in potent inhibitory activity toward chymotrypsin. Iwanaga S, Yamasaki N, Kimura M. J Biochem; 1998 Sep 15; 124(3):663-9. PubMed ID: 9722681 [Abstract] [Full Text] [Related]
18. Template-assisted rational design of peptide inhibitors of furin using the lysine fragment of the mung bean trypsin inhibitor. Tao H, Zhang Z, Shi J, Shao XX, Cui D, Chi CW. FEBS J; 2006 Sep 15; 273(17):3907-14. PubMed ID: 16934032 [Abstract] [Full Text] [Related]
19. Introduction of Pro and its analogues in the conserved P1' position of trypsin inhibitor SFTI-1 retains its inhibitory activity. Łęgowska A, Dębowski D, Łukajtis R, Sztabkowska E, Mizeria A, Brzozowski K, Wysocka M, Lesner A, Rolka K. Protein Pept Lett; 2011 Nov 15; 18(11):1158-67. PubMed ID: 21605056 [Abstract] [Full Text] [Related]
20. Conformational studies by 1H nuclear magnetic resonance of the trypsin-chymotrypsin inhibitor B-III from peanuts and its enzymatically modified derivative. Koyama S, Kobayashi Y, Norioka S, Kyogoku Y, Ikenaka T. Biochemistry; 1986 Dec 02; 25(24):8076-82. PubMed ID: 3542043 [Abstract] [Full Text] [Related] Page: [Next] [New Search]