These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
320 related items for PubMed ID: 35980178
1. Evaluation of Metabolic Engineering Strategies on 2-Ketoisovalerate Production by Escherichia coli. Zhou L, Zhu Y, Yuan Z, Liu G, Sun Z, Du S, Liu H, Li Y, Liu H, Zhou Z. Appl Environ Microbiol; 2022 Sep 13; 88(17):e0097622. PubMed ID: 35980178 [Abstract] [Full Text] [Related]
2. Isobutanol and 2-ketoisovalerate production by Klebsiella pneumoniae via a native pathway. Gu J, Zhou J, Zhang Z, Kim CH, Jiang B, Shi J, Hao J. Metab Eng; 2017 Sep 13; 43(Pt A):71-84. PubMed ID: 28802880 [Abstract] [Full Text] [Related]
3. Production of α-ketoisovalerate with whey powder by systemic metabolic engineering of Klebsiella oxytoca. Sun W, Wang S, Tan X, Guo L, Liu W, Tian W, Zhang H, Jiang T, Meng W, Liu Y, Kang Z, Lü C, Gao C, Xu P, Ma C. Microb Cell Fact; 2024 Oct 05; 23(1):264. PubMed ID: 39367476 [Abstract] [Full Text] [Related]
4. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21. Iverson A, Garza E, Manow R, Wang J, Gao Y, Grayburn S, Zhou S. BMC Syst Biol; 2016 Apr 16; 10():31. PubMed ID: 27083875 [Abstract] [Full Text] [Related]
5. Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Atsumi S, Li Z, Liao JC. Appl Environ Microbiol; 2009 Oct 16; 75(19):6306-11. PubMed ID: 19684168 [Abstract] [Full Text] [Related]
6. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Shi A, Zhu X, Lu J, Zhang X, Ma Y. Metab Eng; 2013 Mar 16; 16():1-10. PubMed ID: 23246519 [Abstract] [Full Text] [Related]
7. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Krause FS, Blombach B, Eikmanns BJ. Appl Environ Microbiol; 2010 Dec 16; 76(24):8053-61. PubMed ID: 20935122 [Abstract] [Full Text] [Related]
8. Metabolic engineering of the acid-tolerant yeast Pichia kudriavzevii for efficient L-malic acid production at low pH. Xi Y, Xu H, Zhan T, Qin Y, Fan F, Zhang X. Metab Eng; 2023 Jan 16; 75():170-180. PubMed ID: 36566973 [Abstract] [Full Text] [Related]
9. Combining Protein and Metabolic Engineering Strategies for High-Level Production of O-Acetylhomoserine in Escherichia coli. Wei L, Wang Q, Xu N, Cheng J, Zhou W, Han G, Jiang H, Liu J, Ma Y. ACS Synth Biol; 2019 May 17; 8(5):1153-1167. PubMed ID: 30973696 [Abstract] [Full Text] [Related]
10. Isobutanol production in Corynebacterium glutamicum: Suppressed succinate by-production by pckA inactivation and enhanced productivity via the Entner-Doudoroff pathway. Hasegawa S, Jojima T, Suda M, Inui M. Metab Eng; 2020 May 17; 59():24-35. PubMed ID: 31926306 [Abstract] [Full Text] [Related]
11. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate. Buchholz J, Schwentner A, Brunnenkan B, Gabris C, Grimm S, Gerstmeir R, Takors R, Eikmanns BJ, Blombach B. Appl Environ Microbiol; 2013 Sep 17; 79(18):5566-75. PubMed ID: 23835179 [Abstract] [Full Text] [Related]
12. Improving isobutanol production in metabolically engineered Escherichia coli by co-producing ethanol and modulation of pentose phosphate pathway. Liu Z, Liu P, Xiao D, Zhang X. J Ind Microbiol Biotechnol; 2016 Jun 17; 43(6):851-60. PubMed ID: 26946319 [Abstract] [Full Text] [Related]
13. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Lee WH, Seo SO, Bae YH, Nan H, Jin YS, Seo JH. Bioprocess Biosyst Eng; 2012 Nov 17; 35(9):1467-75. PubMed ID: 22543927 [Abstract] [Full Text] [Related]
15. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum. Skorokhodova AY, Morzhakova AA, Gulevich AY, Debabov VG. J Biotechnol; 2015 Nov 20; 214():33-42. PubMed ID: 26362413 [Abstract] [Full Text] [Related]
16. Multiple strategies for metabolic engineering of Escherichia coli for efficient production of glycolate. Zhu T, Yao D, Li D, Xu H, Jia S, Bi C, Cai J, Zhu X, Zhang X. Biotechnol Bioeng; 2021 Dec 20; 118(12):4699-4707. PubMed ID: 34491579 [Abstract] [Full Text] [Related]
17. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis. Qi H, Li S, Zhao S, Huang D, Xia M, Wen J. PLoS One; 2014 Dec 20; 9(4):e93815. PubMed ID: 24705866 [Abstract] [Full Text] [Related]
18. Improving isobutanol production with the yeast Saccharomyces cerevisiae by successively blocking competing metabolic pathways as well as ethanol and glycerol formation. Wess J, Brinek M, Boles E. Biotechnol Biofuels; 2019 Dec 20; 12():173. PubMed ID: 31303893 [Abstract] [Full Text] [Related]
19. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Li S, Wen J, Jia X. Appl Microbiol Biotechnol; 2011 Aug 20; 91(3):577-89. PubMed ID: 21533914 [Abstract] [Full Text] [Related]
20. High-yield production of L-valine in engineered Escherichia coli by a novel two-stage fermentation. Hao Y, Ma Q, Liu X, Fan X, Men J, Wu H, Jiang S, Tian D, Xiong B, Xie X. Metab Eng; 2020 Nov 20; 62():198-206. PubMed ID: 32961297 [Abstract] [Full Text] [Related] Page: [Next] [New Search]