These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


556 related items for PubMed ID: 35988401

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Assessing and predicting water quality index with key water parameters by machine learning models in coastal cities, China.
    Xu J, Mo Y, Zhu S, Wu J, Jin G, Wang YG, Ji Q, Li L.
    Heliyon; 2024 Jul 15; 10(13):e33695. PubMed ID: 39044968
    [Abstract] [Full Text] [Related]

  • 4. Prediction of weighted arithmetic water quality index for urban water quality using ensemble machine learning model.
    Mohseni U, Pande CB, Chandra Pal S, Alshehri F.
    Chemosphere; 2024 Mar 15; 352():141393. PubMed ID: 38325619
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Machine learning prediction of tree species diversity using forest structure and environmental factors: a case study from the Hyrcanian forest, Iran.
    Valizadeh E, Asadi H, Jaafari A, Tafazoli M.
    Environ Monit Assess; 2023 Oct 18; 195(11):1334. PubMed ID: 37851130
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. A novel approach for estimating and predicting uncertainty in water quality index model using machine learning approaches.
    Uddin MG, Nash S, Rahman A, Olbert AI.
    Water Res; 2023 Feb 01; 229():119422. PubMed ID: 36459893
    [Abstract] [Full Text] [Related]

  • 11. Using machine learning models to predict the effects of seasonal fluxes on Plesiomonas shigelloides population density.
    Ekundayo TC, Ijabadeniyi OA, Igbinosa EO, Okoh AI.
    Environ Pollut; 2023 Jan 15; 317():120734. PubMed ID: 36455774
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Performance Analysis of Conventional Machine Learning Algorithms for Identification of Chronic Kidney Disease in Type 1 Diabetes Mellitus Patients.
    Chowdhury NH, Reaz MBI, Haque F, Ahmad S, Ali SHM, A Bakar AA, Bhuiyan MAS.
    Diagnostics (Basel); 2021 Dec 03; 11(12):. PubMed ID: 34943504
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Assessment and prediction of Water Quality Index (WQI) by seasonal key water parameters in a coastal city: application of machine learning models.
    Mo Y, Xu J, Liu C, Wu J, Chen D.
    Environ Monit Assess; 2024 Oct 03; 196(11):1008. PubMed ID: 39358562
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Improved soil carbon stock spatial prediction in a Mediterranean soil erosion site through robust machine learning techniques.
    Mosaid H, Barakat A, John K, Faouzi E, Bustillo V, El Garnaoui M, Heung B.
    Environ Monit Assess; 2024 Jan 10; 196(2):130. PubMed ID: 38198014
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Groundwater quality modeling and determining critical points: a comparison of machine learning to Best-Worst Method.
    Nasiri Khiavi A, Mostafazadeh R, Adhami M.
    Environ Sci Pollut Res Int; 2023 Nov 10; 30(54):115758-115775. PubMed ID: 37889408
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.