These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
274 related items for PubMed ID: 35988434
1. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics. Washabaugh EP, Shanmugam TA, Ranganathan R, Krishnan C. Gait Posture; 2022 Sep; 97():188-195. PubMed ID: 35988434 [Abstract] [Full Text] [Related]
2. Accuracy of Video-Based Gait Analysis Using Pose Estimation During Treadmill Walking Versus Overground Walking in Persons After Stroke. John K, Stenum J, Chiang CC, French MA, Kim C, Manor J, Statton MA, Cherry-Allen KM, Roemmich RT. Phys Ther; 2024 Feb 01; 104(2):. PubMed ID: 37682075 [Abstract] [Full Text] [Related]
3. Two-dimensional video-based analysis of human gait using pose estimation. Stenum J, Rossi C, Roemmich RT. PLoS Comput Biol; 2021 Apr 01; 17(4):e1008935. PubMed ID: 33891585 [Abstract] [Full Text] [Related]
4. Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm. Ota M, Tateuchi H, Hashiguchi T, Ichihashi N. Gait Posture; 2021 Mar 01; 85():290-297. PubMed ID: 33636458 [Abstract] [Full Text] [Related]
5. The accuracy of markerless motion capture combined with computer vision techniques for measuring running kinematics. Van Hooren B, Pecasse N, Meijer K, Essers JMN. Scand J Med Sci Sports; 2023 Jun 01; 33(6):966-978. PubMed ID: 36680411 [Abstract] [Full Text] [Related]
6. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. Wade L, Needham L, McGuigan P, Bilzon J. PeerJ; 2022 Jun 01; 10():e12995. PubMed ID: 35237469 [Abstract] [Full Text] [Related]
7. Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane. Patel G, Mullerpatan R, Agarwal B, Shetty T, Ojha R, Shaikh-Mohammed J, Sujatha S. Proc Inst Mech Eng H; 2022 May 01; 236(5):686-696. PubMed ID: 35001713 [Abstract] [Full Text] [Related]
8. Artificial Intelligence-Assisted motion capture for medical applications: a comparative study between markerless and passive marker motion capture. Takeda I, Yamada A, Onodera H. Comput Methods Biomech Biomed Engin; 2021 Jun 01; 24(8):864-873. PubMed ID: 33290107 [Abstract] [Full Text] [Related]
9. Accuracy of Temporo-Spatial and Lower Limb Joint Kinematics Parameters Using OpenPose for Various Gait Patterns With Orthosis. Yamamoto M, Shimatani K, Hasegawa M, Kurita Y, Ishige Y, Takemura H. IEEE Trans Neural Syst Rehabil Eng; 2021 Jun 01; 29():2666-2675. PubMed ID: 34914592 [Abstract] [Full Text] [Related]
10. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 2: Accuracy. Pagnon D, Domalain M, Reveret L. Sensors (Basel); 2022 Apr 01; 22(7):. PubMed ID: 35408326 [Abstract] [Full Text] [Related]
11. Video-Based Pose Estimation for Gait Analysis in Stroke Survivors during Clinical Assessments: A Proof-of-Concept Study. Lonini L, Moon Y, Embry K, Cotton RJ, McKenzie K, Jenz S, Jayaraman A. Digit Biomark; 2022 Apr 01; 6(1):9-18. PubMed ID: 35224426 [Abstract] [Full Text] [Related]
12. Validity of an artificial intelligence, human pose estimation model for measuring single-leg squat kinematics. Haberkamp LD, Garcia MC, Bazett-Jones DM. J Biomech; 2022 Nov 01; 144():111333. PubMed ID: 36198251 [Abstract] [Full Text] [Related]
14. The accuracy of several pose estimation methods for 3D joint centre localisation. Needham L, Evans M, Cosker DP, Wade L, McGuigan PM, Bilzon JL, Colyer SL. Sci Rep; 2021 Oct 19; 11(1):20673. PubMed ID: 34667207 [Abstract] [Full Text] [Related]
15. Concurrent validity of human pose tracking in video for measuring gait parameters in older adults: a preliminary analysis with multiple trackers, viewing angles, and walking directions. Mehdizadeh S, Nabavi H, Sabo A, Arora T, Iaboni A, Taati B. J Neuroeng Rehabil; 2021 Sep 15; 18(1):139. PubMed ID: 34526074 [Abstract] [Full Text] [Related]
17. Comparison of kinematics between Theia markerless and conventional marker-based gait analysis in clinical patients. Wren TAL, Isakov P, Rethlefsen SA. Gait Posture; 2023 Jul 15; 104():9-14. PubMed ID: 37285635 [Abstract] [Full Text] [Related]
18. Validity of AI-Based Gait Analysis for Simultaneous Measurement of Bilateral Lower Limb Kinematics Using a Single Video Camera. Ino T, Samukawa M, Ishida T, Wada N, Koshino Y, Kasahara S, Tohyama H. Sensors (Basel); 2023 Dec 13; 23(24):. PubMed ID: 38139644 [Abstract] [Full Text] [Related]
19. Assessment of a novel deep learning-based marker-less motion capture system for gait study. Vafadar S, Skalli W, Bonnet-Lebrun A, Assi A, Gajny L. Gait Posture; 2022 May 13; 94():138-143. PubMed ID: 35306382 [Abstract] [Full Text] [Related]
20. Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait. Horsak B, Eichmann A, Lauer K, Prock K, Krondorfer P, Siragy T, Dumphart B. J Biomech; 2023 Oct 13; 159():111801. PubMed ID: 37738945 [Abstract] [Full Text] [Related] Page: [Next] [New Search]