These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


189 related items for PubMed ID: 35988486

  • 1. PAH depletion in weathered oil slicks estimated from modeled age-at-sea during the Deepwater Horizon oil spill.
    Montas L, Ferguson AC, Mena KD, Solo-Gabriele HM, Paris CB.
    J Hazard Mater; 2022 Oct 15; 440():129767. PubMed ID: 35988486
    [Abstract] [Full Text] [Related]

  • 2. Long-term monitoring data to describe the fate of polycyclic aromatic hydrocarbons in Deepwater Horizon oil submerged off Alabama's beaches.
    Yin F, John GF, Hayworth JS, Clement TP.
    Sci Total Environ; 2015 Mar 01; 508():46-56. PubMed ID: 25437952
    [Abstract] [Full Text] [Related]

  • 3. Petroleum hydrocarbon persistence following the Deepwater Horizon oil spill as a function of shoreline energy.
    Evans M, Liu J, Bacosa H, Rosenheim BE, Liu Z.
    Mar Pollut Bull; 2017 Feb 15; 115(1-2):47-56. PubMed ID: 27894726
    [Abstract] [Full Text] [Related]

  • 4. Migrating Tundra Peregrine Falcons accumulate polycyclic aromatic hydrocarbons along Gulf of Mexico following Deepwater Horizon oil spill.
    Seegar WS, Yates MA, Doney GE, Jenny JP, Seegar TC, Perkins C, Giovanni M.
    Ecotoxicology; 2015 Jul 15; 24(5):1102-11. PubMed ID: 25794559
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Chemical composition of floating and sunken in-situ burn residues from the Deepwater Horizon oil spill.
    Stout SA, Payne JR.
    Mar Pollut Bull; 2016 Jul 15; 108(1-2):186-202. PubMed ID: 27132992
    [Abstract] [Full Text] [Related]

  • 7. Weathering patterns of polycyclic aromatic hydrocarbons contained in submerged Deepwater Horizon oil spill residues when re-exposed to sunlight.
    John GF, Han Y, Clement TP.
    Sci Total Environ; 2016 Dec 15; 573():189-202. PubMed ID: 27565528
    [Abstract] [Full Text] [Related]

  • 8. Assessment of photochemical processes in marine oil spill fingerprinting.
    Radović JR, Aeppli C, Nelson RK, Jimenez N, Reddy CM, Bayona JM, Albaigés J.
    Mar Pollut Bull; 2014 Feb 15; 79(1-2):268-77. PubMed ID: 24355571
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Need to update human health risk assessment protocols for polycyclic aromatic hydrocarbons in seafood after oil spills.
    Farrington JW.
    Mar Pollut Bull; 2020 Jan 15; 150():110744. PubMed ID: 31910519
    [Abstract] [Full Text] [Related]

  • 11. Co-exposure to sunlight enhances the toxicity of naturally weathered Deepwater Horizon oil to early lifestage red drum (Sciaenops ocellatus) and speckled seatrout (Cynoscion nebulosus).
    Alloy M, Garner TR, Bridges K, Mansfield C, Carney M, Forth H, Krasnec M, Lay C, Takeshita R, Morris J, Bonnot S, Oris J, Roberts A.
    Environ Toxicol Chem; 2017 Mar 15; 36(3):780-785. PubMed ID: 27868239
    [Abstract] [Full Text] [Related]

  • 12. Composition and depth distribution of hydrocarbons in Barataria Bay marsh sediments after the Deepwater Horizon oil spill.
    Dincer Kırman Z, Sericano JL, Wade TL, Bianchi TS, Marcantonio F, Kolker AS.
    Environ Pollut; 2016 Jul 15; 214():101-113. PubMed ID: 27064616
    [Abstract] [Full Text] [Related]

  • 13. Characterization of oil and water accommodated fractions used to conduct aquatic toxicity testing in support of the Deepwater Horizon oil spill natural resource damage assessment.
    Forth HP, Mitchelmore CL, Morris JM, Lipton J.
    Environ Toxicol Chem; 2017 Jun 15; 36(6):1450-1459. PubMed ID: 27805278
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Predicting phototoxicity of alkylated PAHs, mixtures of PAHs, and water accommodated fractions (WAF) of neat and weathered petroleum with the phototoxic target lipid model.
    Marzooghi S, Finch BE, Stubblefield WA, Di Toro DM.
    Environ Toxicol Chem; 2018 Aug 15; 37(8):2165-2174. PubMed ID: 29777583
    [Abstract] [Full Text] [Related]

  • 16. Characterization of dissolved and particulate phases of water accommodated fractions used to conduct aquatic toxicity testing in support of the Deepwater Horizon natural resource damage assessment.
    Forth HP, Mitchelmore CL, Morris JM, Lay CR, Lipton J.
    Environ Toxicol Chem; 2017 Jun 15; 36(6):1460-1472. PubMed ID: 28328044
    [Abstract] [Full Text] [Related]

  • 17. The recalcitrance and potential toxicity of polycyclic aromatic hydrocarbons within crude oil residues in beach sediments at the BIOS site, nearly forty years later.
    Hunnie BE, Schreiber L, Greer CW, Stern GA.
    Environ Res; 2023 Apr 01; 222():115329. PubMed ID: 36693458
    [Abstract] [Full Text] [Related]

  • 18. Polycyclic Aromatic Hydrocarbons (PAHs) and Hopanes in Plastic Resin Pellets as Markers of Oil Pollution via International Pellet Watch Monitoring.
    Yeo BG, Takada H, Hosoda J, Kondo A, Yamashita R, Saha M, Maes T.
    Arch Environ Contam Toxicol; 2017 Aug 01; 73(2):196-206. PubMed ID: 28710501
    [Abstract] [Full Text] [Related]

  • 19. Spatial and temporal distribution of water column total polycyclic aromatic hydrocarbons (PAH) and total petroleum hydrocarbons (TPH) from the Deepwater Horizon (Macondo) incident.
    Wade TL, Sericano JL, Sweet ST, Knap AH, Guinasso NL.
    Mar Pollut Bull; 2016 Feb 15; 103(1-2):286-293. PubMed ID: 26774441
    [Abstract] [Full Text] [Related]

  • 20. How weathering might intensify the toxicity of spilled crude oil in marine environments.
    Ozhan K.
    Environ Sci Pollut Res Int; 2023 Sep 15; 30(44):99561-99569. PubMed ID: 37615916
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.