These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 35990432

  • 1. Computational Study of the Thermal Rectification Properties of a Graphene-Based Nanostructure.
    Chen J, Meng L.
    ACS Omega; 2022 Aug 16; 7(32):28030-28040. PubMed ID: 35990432
    [Abstract] [Full Text] [Related]

  • 2. Giant Thermal Rectification from Single-Carbon Nanotube-Graphene Junction.
    Yang X, Yu D, Cao B.
    ACS Appl Mater Interfaces; 2017 Jul 19; 9(28):24078-24084. PubMed ID: 28636314
    [Abstract] [Full Text] [Related]

  • 3. Room temperature thermal rectification in suspended asymmetric graphene ribbon.
    Islam MR, Yongzheng L, Kareekunnan A, Mizuta H.
    Nanotechnology; 2024 Jun 18; 35(36):. PubMed ID: 38848694
    [Abstract] [Full Text] [Related]

  • 4. Multilayer Graphene-Based Thermal Rectifier with Interlayer Gradient Functionalization.
    Wei A, Lahkar S, Li X, Li S, Ye H.
    ACS Appl Mater Interfaces; 2019 Dec 04; 11(48):45180-45188. PubMed ID: 31746588
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Thermal Rectifier and Thermal Transistor of 1T/2H MoS2 for Heat Flow Management.
    Yang X, Wang S, Wang C, Lu R, Zheng X, Zhang T, Liu M, Zheng J, Chen H.
    ACS Appl Mater Interfaces; 2022 Jan 26; 14(3):4434-4442. PubMed ID: 35030307
    [Abstract] [Full Text] [Related]

  • 7. Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures.
    Wang Y, Vallabhaneni A, Hu J, Qiu B, Chen YP, Ruan X.
    Nano Lett; 2014 Feb 12; 14(2):592-6. PubMed ID: 24393070
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y, Hu C, Huang J, Sumpter BG, Qiao R.
    J Chem Phys; 2015 Jun 28; 142(24):244703. PubMed ID: 26133445
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Effects of Different Phonon Scattering Factors on the Heat Transport Properties of Graphene Ribbons.
    Chen J, Meng L.
    ACS Omega; 2022 Jun 14; 7(23):20186-20194. PubMed ID: 35722022
    [Abstract] [Full Text] [Related]

  • 20. Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons.
    Yang H, Tang Y, Gong J, Liu Y, Wang X, Zhao Y, Yang P, Wang S.
    J Mol Model; 2013 Nov 14; 19(11):4781-8. PubMed ID: 24013440
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.