These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


127 related items for PubMed ID: 36027054

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Application of phosphogypsum and phosphate-solubilizing fungi to Pb remediation: From simulation to in vivo incubation.
    Meng L, Ding K, Qiu Y, Chen Y, Huo H, Yu D, Tian D, Li Z.
    Sci Total Environ; 2024 Jul 10; 933():173171. PubMed ID: 38740208
    [Abstract] [Full Text] [Related]

  • 4. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite.
    Li C, Li Q, Wang Z, Ji G, Zhao H, Gao F, Su M, Jiao J, Li Z, Li H.
    Sci Rep; 2019 Oct 25; 9(1):15291. PubMed ID: 31653926
    [Abstract] [Full Text] [Related]

  • 5. Evaluating the survival of Aspergillus niger in a highly polluted red soil with addition of Phosphogypsum and bioorganic fertilizer.
    Meng L, Pan S, Zhou L, Santasup C, Su M, Tian D, Li Z.
    Environ Sci Pollut Res Int; 2022 Oct 25; 29(50):76446-76455. PubMed ID: 35670942
    [Abstract] [Full Text] [Related]

  • 6. Effect of phytase from Aspergillus niger on plant growth and mineral assimilation in wheat (Triticum aestivum Linn.) and its potential for use as a soil amendment.
    Gujar PD, Bhavsar KP, Khire JM.
    J Sci Food Agric; 2013 Jul 25; 93(9):2242-7. PubMed ID: 23355258
    [Abstract] [Full Text] [Related]

  • 7. Biotransformation of struvite by Aspergillus niger: phosphate release and magnesium biomineralization as glushinskite.
    Suyamud B, Ferrier J, Csetenyi L, Inthorn D, Gadd GM.
    Environ Microbiol; 2020 Apr 25; 22(4):1588-1602. PubMed ID: 32079035
    [Abstract] [Full Text] [Related]

  • 8. Delignification overmatches hemicellulose removal for improving hydrolysis of wheat straw using the enzyme cocktail from Aspergillus niger.
    Wang J, Chen X, Chio C, Yang C, Su E, Jin Y, Cao F, Qin W.
    Bioresour Technol; 2019 Feb 25; 274():459-467. PubMed ID: 30553086
    [Abstract] [Full Text] [Related]

  • 9. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger.
    Li Z, Bai T, Dai L, Wang F, Tao J, Meng S, Hu Y, Wang S, Hu S.
    Sci Rep; 2016 Apr 29; 6():25313. PubMed ID: 27126606
    [Abstract] [Full Text] [Related]

  • 10. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity.
    Mendes Gde O, Zafra DL, Vassilev NB, Silva IR, Ribeiro JI, Costa MD.
    Appl Environ Microbiol; 2014 May 29; 80(10):3081-5. PubMed ID: 24610849
    [Abstract] [Full Text] [Related]

  • 11. Pseudomonas fluorescens ATCC 13525 containing an artificial oxalate operon and Vitreoscilla hemoglobin secretes oxalic acid and solubilizes rock phosphate in acidic alfisols.
    Yadav K, Kumar C, Archana G, Naresh Kumar G.
    PLoS One; 2014 May 29; 9(4):e92400. PubMed ID: 24705024
    [Abstract] [Full Text] [Related]

  • 12. Comparing phosphorus mobilization strategies using Aspergillus niger for the mineral dissolution of three phosphate rocks.
    Schneider KD, van Straaten P, de Orduña RM, Glasauer S, Trevors J, Fallow D, Smith PS.
    J Appl Microbiol; 2010 Jan 29; 108(1):366-74. PubMed ID: 19709342
    [Abstract] [Full Text] [Related]

  • 13. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger.
    van Munster JM, Daly P, Delmas S, Pullan ST, Blythe MJ, Malla S, Kokolski M, Noltorp ECM, Wennberg K, Fetherston R, Beniston R, Yu X, Dupree P, Archer DB.
    Fungal Genet Biol; 2014 Nov 29; 72():34-47. PubMed ID: 24792495
    [Abstract] [Full Text] [Related]

  • 14. Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants.
    Wahid OA, Mehana TA.
    Microbiol Res; 2000 Sep 29; 155(3):221-7. PubMed ID: 11061191
    [Abstract] [Full Text] [Related]

  • 15. Alternative splicing analysis of lignocellulose-degrading enzyme genes and enzyme variants in Aspergillus niger.
    Xu Y, Dong F, Wang R, Ajmal M, Liu X, Lin H, Chen H.
    Appl Microbiol Biotechnol; 2024 Apr 19; 108(1):302. PubMed ID: 38639796
    [Abstract] [Full Text] [Related]

  • 16. Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA.
    Kobayashi K, Hattori T, Honda Y, Kirimura K.
    J Ind Microbiol Biotechnol; 2014 May 19; 41(5):749-56. PubMed ID: 24615146
    [Abstract] [Full Text] [Related]

  • 17. Overexpression of the gene encoding alternative oxidase for enhanced glucose consumption in oxalic acid producing Aspergillus niger expressing oxaloacetate hydrolase gene.
    Yoshioka I, Kobayashi K, Kirimura K.
    J Biosci Bioeng; 2020 Feb 19; 129(2):172-176. PubMed ID: 31611058
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse.
    van den Brink J, Maitan-Alfenas GP, Zou G, Wang C, Zhou Z, Guimarães VM, de Vries RP.
    Biotechnol J; 2014 Oct 19; 9(10):1329-38. PubMed ID: 25116172
    [Abstract] [Full Text] [Related]

  • 20. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger.
    Jiang Y, Duarte AV, van den Brink J, Wiebenga A, Zou G, Wang C, de Vries RP, Zhou Z, Benoit I.
    Biotechnol Lett; 2016 Jan 19; 38(1):65-70. PubMed ID: 26354856
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.