These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


190 related items for PubMed ID: 36056567

  • 1. Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus.
    Tang S, Guo N, Tang Q, Peng F, Liu Y, Xia H, Lu S, Guo L.
    Plant Biotechnol J; 2022 Dec; 20(12):2406-2417. PubMed ID: 36056567
    [Abstract] [Full Text] [Related]

  • 2. BnaPPT1 is essential for chloroplast development and seed oil accumulation in Brassica napus.
    Tang S, Peng F, Tang Q, Liu Y, Xia H, Yao X, Lu S, Guo L.
    J Adv Res; 2022 Dec; 42():29-40. PubMed ID: 35907629
    [Abstract] [Full Text] [Related]

  • 3. Seed-Specific Overexpression of the Pyruvate Transporter BASS2 Increases Oil Content in Arabidopsis Seeds.
    Lee EJ, Oh M, Hwang JU, Li-Beisson Y, Nishida I, Lee Y.
    Front Plant Sci; 2017 Dec; 8():194. PubMed ID: 28265278
    [Abstract] [Full Text] [Related]

  • 4. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos.
    Tan H, Zhang J, Qi X, Shi X, Zhou J, Wang X, Xiang X.
    Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824
    [Abstract] [Full Text] [Related]

  • 5. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Brassica napus L.
    Shahid M, Cai G, Zu F, Zhao Q, Qasim MU, Hong Y, Fan C, Zhou Y.
    Int J Mol Sci; 2019 Apr 23; 20(8):. PubMed ID: 31018533
    [Abstract] [Full Text] [Related]

  • 6. Interaction between phenylpropane metabolism and oil accumulation in the developing seed of Brassica napus revealed by high temporal-resolution transcriptomes.
    Yu L, Liu D, Yin F, Yu P, Lu S, Zhang Y, Zhao H, Lu C, Yao X, Dai C, Yang QY, Guo L.
    BMC Biol; 2023 Sep 29; 21(1):202. PubMed ID: 37775748
    [Abstract] [Full Text] [Related]

  • 7. Lysophosphatidic acid acyltransferase 2 and 5 commonly, but differently, promote seed oil accumulation in Brassica napus.
    Zhang K, He J, Yin Y, Chen K, Deng X, Yu P, Li H, Zhao W, Yan S, Li M.
    Biotechnol Biofuels Bioprod; 2022 Aug 12; 15(1):83. PubMed ID: 35962411
    [Abstract] [Full Text] [Related]

  • 8. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus.
    Ding LN, Guo XJ, Li M, Fu ZL, Yan SZ, Zhu KM, Wang Z, Tan XL.
    Plant Cell Rep; 2019 Feb 12; 38(2):243-253. PubMed ID: 30535511
    [Abstract] [Full Text] [Related]

  • 9. A plastidial sodium-dependent pyruvate transporter.
    Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Bräutigam A, Weber AP, Izui K.
    Nature; 2011 Aug 24; 476(7361):472-5. PubMed ID: 21866161
    [Abstract] [Full Text] [Related]

  • 10. Targeted mutagenesis of flavonoid biosynthesis pathway genes reveals functional divergence in seed coat colour, oil content and fatty acid composition in Brassica napus L.
    Li H, Yu K, Zhang Z, Yu Y, Wan J, He H, Fan C.
    Plant Biotechnol J; 2024 Feb 24; 22(2):445-459. PubMed ID: 37856327
    [Abstract] [Full Text] [Related]

  • 11. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus.
    Ding LN, Gu SL, Zhu FG, Ma ZY, Li J, Li M, Wang Z, Tan XL.
    BMC Plant Biol; 2020 Jan 13; 20(1):21. PubMed ID: 31931712
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Development and screening of EMS mutants with altered seed oil content or fatty acid composition in Brassica napus.
    Tang S, Liu DX, Lu S, Yu L, Li Y, Lin S, Li L, Du Z, Liu X, Li X, Ma W, Yang QY, Guo L.
    Plant J; 2020 Dec 13; 104(5):1410-1422. PubMed ID: 33048384
    [Abstract] [Full Text] [Related]

  • 14. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.
    Tan H, Xie Q, Xiang X, Li J, Zheng S, Xu X, Guo H, Ye W.
    PLoS One; 2015 Dec 13; 10(4):e0124794. PubMed ID: 25919591
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene.
    Elhiti M, Yang C, Chan A, Durnin DC, Belmonte MF, Ayele BT, Tahir M, Stasolla C.
    J Exp Bot; 2012 Jul 13; 63(12):4447-61. PubMed ID: 22563121
    [Abstract] [Full Text] [Related]

  • 17. Regional association analysis coupled with transcriptome analyses reveal candidate genes affecting seed oil accumulation in Brassica napus.
    Yao M, Guan M, Yang Q, Huang L, Xiong X, Jan HU, Voss-Fels KP, Werner CR, He X, Qian W, Snowdon RJ, Guan C, Hua W, Qian L.
    Theor Appl Genet; 2021 May 13; 134(5):1545-1555. PubMed ID: 33677638
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Decreased seed oil production in FUSCA3 Brassica napus mutant plants.
    Elahi N, Duncan RW, Stasolla C.
    Plant Physiol Biochem; 2015 Nov 13; 96():222-30. PubMed ID: 26302483
    [Abstract] [Full Text] [Related]

  • 20. Genome-Wide Identification and Comparative Expression Profile Analysis of the Long-Chain Acyl-CoA synthetase (LACS) Gene Family in Two Different Oil Content Cultivars of Brassica napus.
    Xiao Z, Li N, Wang S, Sun J, Zhang L, Zhang C, Yang H, Zhao H, Yang B, Wei L, Du H, Qu C, Lu K, Li J.
    Biochem Genet; 2019 Dec 13; 57(6):781-800. PubMed ID: 31011871
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.