These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics. Karsten B, Baker J, Naclerio F, Klose A, Bianco A, Nimmerichter A. Int J Sports Physiol Perform; 2018 Feb 01; 13(2):183-188. PubMed ID: 28530476 [Abstract] [Full Text] [Related]
5. A dynamic model of the bi-exponential reconstitution and expenditure of W' in trained cyclists. Chorley A, Marwood S, Lamb KL. Eur J Sport Sci; 2023 Dec 01; 23(12):2368-2378. PubMed ID: 37470470 [Abstract] [Full Text] [Related]
6. Validating an Adjustment to the Intermittent Critical Power Model for Elite Cyclists-Modeling W' Balance During World Cup Team Pursuit Performances. Bartram JC, Thewlis D, Martin DT, Norton KI. Int J Sports Physiol Perform; 2022 Feb 01; 17(2):170-175. PubMed ID: 34560664 [Abstract] [Full Text] [Related]
7. Comparison of inter-trial recovery times for the determination of critical power and W' in cycling. Karsten B, Hopker J, Jobson SA, Baker J, Petrigna L, Klose A, Beedie C. J Sports Sci; 2017 Jul 01; 35(14):1420-1425. PubMed ID: 27531664 [Abstract] [Full Text] [Related]
8. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities. Schäfer LU, Hayes M, Dekerle J. Exp Physiol; 2019 Feb 01; 104(2):209-219. PubMed ID: 30468691 [Abstract] [Full Text] [Related]
10. Critical power, W' and W' reconstitution in women and men. Bourgois G, Mucci P, Boone J, Colosio AL, Bourgois JG, Pogliaghi S, Caen K. Eur J Appl Physiol; 2023 Dec 01; 123(12):2791-2801. PubMed ID: 37369796 [Abstract] [Full Text] [Related]
11. Can We Accurately Predict Critical Power and W' from a Single Ramp Incremental Exercise Test? Caen K, Bourgois JG, Stuer L, Mermans V, Boone J. Med Sci Sports Exerc; 2023 Aug 01; 55(8):1401-1408. PubMed ID: 36924332 [Abstract] [Full Text] [Related]
12. A single-session testing protocol to determine critical power and W'. Constantini K, Sabapathy S, Cross TJ. Eur J Appl Physiol; 2014 Jun 01; 114(6):1153-61. PubMed ID: 24563054 [Abstract] [Full Text] [Related]
14. Modeling the Recovery of W' in the Moderate to Heavy Exercise Intensity Domain. Sreedhara VSM, Ashtiani F, Mocko GM, Vahidi A, Hutchison RE. Med Sci Sports Exerc; 2020 Dec 01; 52(12):2646-2654. PubMed ID: 32555021 [Abstract] [Full Text] [Related]
15. The impact of elevated body core temperature on critical power as determined by a 3-min all-out test. Kaiser BW, Kruse KK, Gibson BM, Santisteban KJ, Larson EA, Wilkins BW, Jones AM, Halliwill JR, Minson CT. J Appl Physiol (1985); 2021 Nov 01; 131(5):1543-1551. PubMed ID: 34617821 [Abstract] [Full Text] [Related]
16. Influence of initial metabolic rate on the power-duration relationship for all-out exercise. Parker Simpson L, Jones AM, Vanhatalo A, Wilkerson DP. Eur J Appl Physiol; 2012 Jul 01; 112(7):2467-73. PubMed ID: 22052102 [Abstract] [Full Text] [Related]
18. Critical Power in Laboratory and Field Conditions Using Single-visit Maximal Effort Trials. Triska C, Tschan H, Tazreiter G, Nimmerichter A. Int J Sports Med; 2015 Nov 01; 36(13):1063-8. PubMed ID: 26258826 [Abstract] [Full Text] [Related]