These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


225 related items for PubMed ID: 36077217

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Effects of different arbuscular mycorrhizal fungal backgrounds and soils on olive plants growth and water relation properties under well-watered and drought conditions.
    Calvo-Polanco M, Sánchez-Castro I, Cantos M, García JL, Azcón R, Ruiz-Lozano JM, Beuzón CR, Aroca R.
    Plant Cell Environ; 2016 Nov; 39(11):2498-2514. PubMed ID: 27448529
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery.
    Aroca R, Vernieri P, Ruiz-Lozano JM.
    J Exp Bot; 2008 Nov; 59(8):2029-41. PubMed ID: 18469324
    [Abstract] [Full Text] [Related]

  • 25. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?
    Aroca R, Porcel R, Ruiz-Lozano JM.
    New Phytol; 2007 Nov; 173(4):808-816. PubMed ID: 17286829
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis?
    López-Ráez JA.
    Planta; 2016 Jun; 243(6):1375-85. PubMed ID: 26627211
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Distinct impact of arbuscular mycorrhizal isolates on tomato plant tolerance to drought combined with chronic and acute heat stress.
    Duc NH, Szentpéteri V, Mayer Z, Posta K.
    Plant Physiol Biochem; 2023 Aug; 201():107892. PubMed ID: 37490823
    [Abstract] [Full Text] [Related]

  • 37. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices.
    Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD.
    New Phytol; 2013 Jan; 197(2):617-630. PubMed ID: 23157494
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Functionality of arbuscular mycorrhizal fungi varies across different growth stages of maize under drought conditions.
    Abrar M, Zhu Y, Maqsood Ur Rehman M, Batool A, Duan HX, Ashraf U, Aqeel M, Gong XF, Peng YN, Khan W, Wang ZY, Xiong YC.
    Plant Physiol Biochem; 2024 Aug; 213():108839. PubMed ID: 38879986
    [Abstract] [Full Text] [Related]

  • 40. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies.
    Ruiz-Lozano JM.
    Mycorrhiza; 2003 Dec; 13(6):309-17. PubMed ID: 12690537
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.