These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
231 related items for PubMed ID: 36086017
1. A Novel CNN-LSTM Model Based Non-Invasive Cuff-Less Blood Pressure Estimation System. Nandi P, Rao M. Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():832-836. PubMed ID: 36086017 [Abstract] [Full Text] [Related]
2. Hybrid CNN-SVR Blood Pressure Estimation Model Using ECG and PPG Signals. Rastegar S, Gholam Hosseini H, Lowe A. Sensors (Basel); 2023 Jan 22; 23(3):. PubMed ID: 36772300 [Abstract] [Full Text] [Related]
3. Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework. Pankaj, Kumar A, Komaragiri R, Kumar M. Phys Eng Sci Med; 2023 Dec 22; 46(4):1589-1605. PubMed ID: 37747644 [Abstract] [Full Text] [Related]
4. Calibration-free blood pressure estimation based on a convolutional neural network. Cho J, Shin H, Choi A. Psychophysiology; 2024 Apr 22; 61(4):e14480. PubMed ID: 37971153 [Abstract] [Full Text] [Related]
5. PPG Signals-Based Blood-Pressure Estimation Using Grid Search in Hyperparameter Optimization of CNN-LSTM. Mahardika T NQ, Fuadah YN, Jeong DU, Lim KM. Diagnostics (Basel); 2023 Aug 01; 13(15):. PubMed ID: 37568929 [Abstract] [Full Text] [Related]
6. Cuff-less and continuous blood pressure measurement based on pulse transit time from carotid and toe photoplethysmograms. Zuhair Sameen A, Jaafar R, Zahedi E, Kok Beng G. J Med Eng Technol; 2022 Oct 01; 46(7):567-589. PubMed ID: 35801952 [Abstract] [Full Text] [Related]
7. Cuff-Less Blood Pressure Estimation via Small Convolutional Neural Networks. Wang W, Mohseni P, Kilgore K, Najafizadeh L. Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov 01; 2021():1031-1034. PubMed ID: 34891464 [Abstract] [Full Text] [Related]
8. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time. Li Y, Wang Z, Zhang L, Yang X, Song J. Australas Phys Eng Sci Med; 2014 Jun 01; 37(2):367-76. PubMed ID: 24722801 [Abstract] [Full Text] [Related]
9. Continuous cuffless blood pressure monitoring using photoplethysmography-based PPG2BP-net for high intrasubject blood pressure variations. Joung J, Jung CW, Lee HC, Chae MJ, Kim HS, Park J, Shin WY, Kim C, Lee M, Choi C. Sci Rep; 2023 May 27; 13(1):8605. PubMed ID: 37244974 [Abstract] [Full Text] [Related]
10. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms. Baker S, Xiang W, Atkinson I. Comput Methods Programs Biomed; 2021 Aug 27; 207():106191. PubMed ID: 34077866 [Abstract] [Full Text] [Related]
11. Accuracy and User Acceptability of 24-hour Ambulatory Blood Pressure Monitoring by a Prototype Cuffless Multi-Sensor Device Compared to a Conventional Oscillometric Device. Heimark S, Hove C, Stepanov A, Boysen ES, Gløersen Ø, Bøtke-Rasmussen KG, Gravdal HJ, Narayanapillai K, Fadl Elmula FEM, Seeberg TM, Larstorp ACK, Waldum-Grevbo B. Blood Press; 2023 Dec 27; 32(1):2274595. PubMed ID: 37885101 [Abstract] [Full Text] [Related]
12. Photoplethysmography-based cuffless blood pressure estimation: an image encoding and fusion approach. Liu Y, Yu J, Mou H. Physiol Meas; 2023 Dec 15; 44(12):. PubMed ID: 38099538 [Abstract] [Full Text] [Related]
14. KD-Informer: A Cuff-Less Continuous Blood Pressure Waveform Estimation Approach Based on Single Photoplethysmography. Ma C, Zhang P, Song F, Sun Y, Fan G, Zhang T, Feng Y, Zhang G. IEEE J Biomed Health Inform; 2023 May 21; 27(5):2219-2230. PubMed ID: 35700247 [Abstract] [Full Text] [Related]
15. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network. Khodabakhshi MB, Eslamyeh N, Sadredini SZ, Ghamari M. Comput Methods Programs Biomed; 2022 Nov 21; 226():107131. PubMed ID: 36137326 [Abstract] [Full Text] [Related]
16. Recurrent Neural Network Models for Blood Pressure Monitoring Using PPG Morphological Features. El Hajj C, Kyriacou PA. Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov 21; 2021():1865-1868. PubMed ID: 34891651 [Abstract] [Full Text] [Related]
17. Novel Deep Convolutional Neural Network for Cuff-less Blood Pressure Measurement Using ECG and PPG Signals. Yan C, Li Z, Zhao W, Hu J, Jia D, Wang H, You T. Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul 21; 2019():1917-1920. PubMed ID: 31946273 [Abstract] [Full Text] [Related]
18. Cuff-Less Blood Pressure Estimation From Photoplethysmography via Visibility Graph and Transfer Learning. Wang W, Mohseni P, Kilgore KL, Najafizadeh L. IEEE J Biomed Health Inform; 2022 May 21; 26(5):2075-2085. PubMed ID: 34784289 [Abstract] [Full Text] [Related]
19. Cuff-less Blood Pressure Measurement Using Supplementary ECG and PPG Features Extracted Through Wavelet Transformation. Singla M, Sistla P, Azeemuddin S. Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul 21; 2019():4628-4631. PubMed ID: 31946895 [Abstract] [Full Text] [Related]
20. Continuous blood pressure prediction system using Conv-LSTM network on hybrid latent features of photoplethysmogram (PPG) and electrocardiogram (ECG) signals. Kamanditya B, Fuadah YN, Mahardika T NQ, Lim KM. Sci Rep; 2024 Jul 16; 14(1):16450. PubMed ID: 39014018 [Abstract] [Full Text] [Related] Page: [Next] [New Search]