These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


176 related items for PubMed ID: 36086297

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Calibration-free blood pressure estimation based on a convolutional neural network.
    Cho J, Shin H, Choi A.
    Psychophysiology; 2024 Apr; 61(4):e14480. PubMed ID: 37971153
    [Abstract] [Full Text] [Related]

  • 24. Combined deep CNN-LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features.
    Jeong DU, Lim KM.
    Sci Rep; 2021 Jun 29; 11(1):13539. PubMed ID: 34188132
    [Abstract] [Full Text] [Related]

  • 25. Photoplethysmography derivatives and pulse transit time in overnight blood pressure monitoring.
    Shahrbabaki SS, Ahmed B, Penzel T, Cvetkovic D.
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug 29; 2016():2855-2858. PubMed ID: 28268912
    [Abstract] [Full Text] [Related]

  • 26. Features from the photoplethysmogram and the electrocardiogram for estimating changes in blood pressure.
    Finnegan E, Davidson S, Harford M, Watkinson P, Tarassenko L, Villarroel M.
    Sci Rep; 2023 Jan 18; 13(1):986. PubMed ID: 36653426
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Comment on 'New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy'.
    van Helmond N, Joseph JI.
    Physiol Meas; 2018 Sep 27; 39(9):098001. PubMed ID: 30183671
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy.
    Lin WH, Wang H, Samuel OW, Liu G, Huang Z, Li G.
    Physiol Meas; 2018 Feb 26; 39(2):025005. PubMed ID: 29319536
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework.
    Pankaj, Kumar A, Komaragiri R, Kumar M.
    Phys Eng Sci Med; 2023 Dec 26; 46(4):1589-1605. PubMed ID: 37747644
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Development of a nonintrusive blood pressure estimation system for computer users.
    Kim J, Park J, Kim K, Chee Y, Lim Y, Park K.
    Telemed J E Health; 2007 Feb 26; 13(1):57-64. PubMed ID: 17309356
    [Abstract] [Full Text] [Related]

  • 38. Schrödinger spectrum based continuous cuff-less blood pressure estimation using clinically relevant features from PPG signal and its second derivative.
    Sarkar S, Ghosh A.
    Comput Biol Med; 2023 Nov 26; 166():107558. PubMed ID: 37806054
    [Abstract] [Full Text] [Related]

  • 39. A PPG-Based Calibration-Free Cuffless Blood Pressure Estimation Method Using Cardiovascular Dynamics.
    Samimi H, Dajani HR.
    Sensors (Basel); 2023 Apr 21; 23(8):. PubMed ID: 37112490
    [Abstract] [Full Text] [Related]

  • 40. The effects of pre-ejection period on post-exercise systolic blood pressure estimation using the pulse arrival time technique.
    Wong MY, Pickwell-MacPherson E, Zhang YT, Cheng JC.
    Eur J Appl Physiol; 2011 Jan 21; 111(1):135-44. PubMed ID: 20824282
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.