These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Hydrodynamic interactions between charged and uncharged Brownian colloids at a fluid-fluid interface. Dani A, Yeganeh M, Maldarelli C. J Colloid Interface Sci; 2022 Dec 15; 628(Pt B):931-945. PubMed ID: 36037716 [Abstract] [Full Text] [Related]
5. Clustering of microswimmers: interplay of shape and hydrodynamics. Theers M, Westphal E, Qi K, Winkler RG, Gompper G. Soft Matter; 2018 Oct 31; 14(42):8590-8603. PubMed ID: 30339172 [Abstract] [Full Text] [Related]
8. Liquid-hexatic-solid phases in active and passive Brownian particles determined by stochastic birth and death events. Almodóvar A, Galla T, López C. Phys Rev E; 2022 Nov 31; 106(5-1):054130. PubMed ID: 36559396 [Abstract] [Full Text] [Related]
9. Hydrodynamic suppression of phase separation in active suspensions. Matas-Navarro R, Golestanian R, Liverpool TB, Fielding SM. Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep 31; 90(3):032304. PubMed ID: 25314443 [Abstract] [Full Text] [Related]
10. Phase Diagram of Active Brownian Spheres: Crystallization and the Metastability of Motility-Induced Phase Separation. Omar AK, Klymko K, GrandPre T, Geissler PL. Phys Rev Lett; 2021 May 07; 126(18):188002. PubMed ID: 34018789 [Abstract] [Full Text] [Related]
11. Intrinsic structure perspective for MIPS interfaces in two-dimensional systems of active Brownian particles. Chacón E, Alarcón F, Ramírez J, Tarazona P, Valeriani C. Soft Matter; 2022 Mar 30; 18(13):2646-2653. PubMed ID: 35302119 [Abstract] [Full Text] [Related]
12. Phase separation of an active colloidal suspension via quorum-sensing. Jose F, Anand SK, Singh SP. Soft Matter; 2021 Mar 21; 17(11):3153-3161. PubMed ID: 33616149 [Abstract] [Full Text] [Related]
13. Emergence of macroscopic directed motion in populations of motile colloids. Bricard A, Caussin JB, Desreumaux N, Dauchot O, Bartolo D. Nature; 2013 Nov 07; 503(7474):95-8. PubMed ID: 24201282 [Abstract] [Full Text] [Related]
14. Unified analysis of topological defects in 2D systems of active and passive disks. Digregorio P, Levis D, Cugliandolo LF, Gonnella G, Pagonabarraga I. Soft Matter; 2022 Jan 19; 18(3):566-591. PubMed ID: 34928290 [Abstract] [Full Text] [Related]
15. Effect of polydispersity on the dynamics of active Brownian particles. Kumar S, Singh JP, Giri D, Mishra S. Phys Rev E; 2021 Aug 19; 104(2-1):024601. PubMed ID: 34525623 [Abstract] [Full Text] [Related]
16. Motility-Induced Microphase and Macrophase Separation in a Two-Dimensional Active Brownian Particle System. Caporusso CB, Digregorio P, Levis D, Cugliandolo LF, Gonnella G. Phys Rev Lett; 2020 Oct 23; 125(17):178004. PubMed ID: 33156654 [Abstract] [Full Text] [Related]
17. Colloidal diffusion inside a spherical cell. Cervantes-Martínez AE, Ramírez-Saito A, Armenta-Calderón R, Ojeda-López MA, Arauz-Lara JL. Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar 23; 83(3 Pt 1):030402. PubMed ID: 21517444 [Abstract] [Full Text] [Related]
18. Guidance of active particles at liquid-liquid interfaces near surfaces. Palacios LS, Katuri J, Pagonabarraga I, Sánchez S. Soft Matter; 2019 Aug 28; 15(32):6581-6588. PubMed ID: 31365015 [Abstract] [Full Text] [Related]
19. Saltation of particles in turbulent channel flow. Ji C, Munjiza A, Avital E, Xu D, Williams J. Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May 28; 89(5):052202. PubMed ID: 25353782 [Abstract] [Full Text] [Related]
20. Hydrodynamically Controlled Self-Organization in Mixtures of Active and Passive Colloids. Madden IP, Wang L, Simmchen J, Luijten E. Small; 2022 May 28; 18(21):e2107023. PubMed ID: 35304973 [Abstract] [Full Text] [Related] Page: [Next] [New Search]