These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 36109960

  • 1. Optimization of asymmetric quantum Otto engine cycles.
    Shastri R, Venkatesh BP.
    Phys Rev E; 2022 Aug; 106(2-1):024123. PubMed ID: 36109960
    [Abstract] [Full Text] [Related]

  • 2. Bounds on fluctuations for finite-time quantum Otto cycle.
    Saryal S, Agarwalla BK.
    Phys Rev E; 2021 Jun; 103(6):L060103. PubMed ID: 34271746
    [Abstract] [Full Text] [Related]

  • 3. The Quantum Friction and Optimal Finite-Time Performance of the Quantum Otto Cycle.
    Insinga AR.
    Entropy (Basel); 2020 Sep 22; 22(9):. PubMed ID: 33286828
    [Abstract] [Full Text] [Related]

  • 4. Quantum Otto-type heat engine with fixed frequency.
    Matos RQ, de Assis RJ, de Almeida NG.
    Phys Rev E; 2023 Nov 22; 108(5-1):054131. PubMed ID: 38115429
    [Abstract] [Full Text] [Related]

  • 5. Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto engines.
    Mohanta S, Saha M, Venkatesh BP, Agarwalla BK.
    Phys Rev E; 2023 Jul 22; 108(1-1):014118. PubMed ID: 37583162
    [Abstract] [Full Text] [Related]

  • 6. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants.
    El Makouri A, Slaoui A, Ahl Laamara R.
    Phys Rev E; 2023 Oct 22; 108(4-1):044114. PubMed ID: 37978648
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Occurrence of discontinuities in the performance of finite-time quantum Otto cycles.
    Zheng Y, Hänggi P, Poletti D.
    Phys Rev E; 2016 Jul 22; 94(1-1):012137. PubMed ID: 27575106
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir.
    Singh V, Müstecaplıoğlu ÖE.
    Phys Rev E; 2020 Dec 22; 102(6-1):062123. PubMed ID: 33466082
    [Abstract] [Full Text] [Related]

  • 14. Quantum mechanical bound for efficiency of quantum Otto heat engine.
    Park JM, Lee S, Chun HM, Noh JD.
    Phys Rev E; 2019 Jul 22; 100(1-1):012148. PubMed ID: 31499873
    [Abstract] [Full Text] [Related]

  • 15. Performance of Quantum Heat Engines Enhanced by Adiabatic Deformation of Trapping Potential.
    Xiao Y, Li K, He J, Wang J.
    Entropy (Basel); 2023 Mar 10; 25(3):. PubMed ID: 36981372
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.