These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 36112049

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Self-enhanced electrochemiluminescence of luminol induced by palladium-graphene oxide for ultrasensitive detection of aflatoxin B1 in food samples.
    Xia M, Yang X, Jiao T, Oyama M, Chen Q, Chen X.
    Food Chem; 2022 Jul 01; 381():132276. PubMed ID: 35121311
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. High-Intensity Focused Ultrasound Combined with Ti3C2-TiO2 to Enhance Electrochemiluminescence of Luminol for the Sensitive Detection of Polynucleotide Kinase.
    Wei Z, Zhang H, Wang Z.
    ACS Appl Mater Interfaces; 2023 Jan 25; 15(3):3804-3811. PubMed ID: 36632668
    [Abstract] [Full Text] [Related]

  • 11. Ceria Doped Zinc Oxide Nanoflowers Enhanced Luminol-Based Electrochemiluminescence Immunosensor for Amyloid-β Detection.
    Wang JX, Zhuo Y, Zhou Y, Wang HJ, Yuan R, Chai YQ.
    ACS Appl Mater Interfaces; 2016 May 25; 8(20):12968-75. PubMed ID: 27145690
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. An electrochemiluminescence immunosensor based on signal magnification of luminol using OER-activated NiFe2O4@C@CeO2/Au as effective co-reaction accelerator.
    Zhou R, Li T, Chen T, Tang Y, Chen Y, Huang X, Gao W.
    Talanta; 2023 Aug 01; 260():124580. PubMed ID: 37141827
    [Abstract] [Full Text] [Related]

  • 15. Enhanced electrochemiluminescence of luminol based on Cu2O-Au heterostructure enabled multiple-amplification strategy.
    Zhu X, Liu H, Dai Y, Wang X, Luo C, Wei Q.
    Biosens Bioelectron; 2020 Mar 01; 151():111970. PubMed ID: 31868609
    [Abstract] [Full Text] [Related]

  • 16. Signal Amplification Strategy Using Atomically Gold-Supported VO2 Nanobelts as a Co-reaction Accelerator for Ultrasensitive Electrochemiluminescent Sensor Construction Based on the Resonance Energy Transfer Platform.
    Guo J, Xie M, Du P, Liu Y, Lu X.
    Anal Chem; 2021 Aug 03; 93(30):10619-10626. PubMed ID: 34283563
    [Abstract] [Full Text] [Related]

  • 17. Sensitive electrochemiluminescence detection for CA15-3 based on immobilizing luminol on dendrimer functionalized ZnO nanorods.
    Jiang X, Wang H, Yuan R, Chai Y.
    Biosens Bioelectron; 2015 Jan 15; 63():33-38. PubMed ID: 25051535
    [Abstract] [Full Text] [Related]

  • 18. CePO4/CeO2 heterostructure and enzymatic action of D-Fe2O3 co-amplify luminol-based electrochemiluminescence immunosensor for NSE detection.
    Li M, Fang J, Wang C, Zhang J, Liu L, Li Y, Cao W, Wei Q.
    Biosens Bioelectron; 2022 Oct 15; 214():114516. PubMed ID: 35803148
    [Abstract] [Full Text] [Related]

  • 19. Single-Atom Iron Enables Strong Low-Triggering-Potential Luminol Cathodic Electrochemiluminescence.
    Gu W, Wang X, Xi M, Wei X, Jiao L, Qin Y, Huang J, Cui X, Zheng L, Hu L, Zhu C.
    Anal Chem; 2022 Jul 05; 94(26):9459-9465. PubMed ID: 35734950
    [Abstract] [Full Text] [Related]

  • 20. An electrochemiluminescence biosensor based on boron nitride quantum dots as novel coreactant for quantitative determination of concanavalin A.
    Wang C, Li M, Wang P, Liu D.
    Mikrochim Acta; 2020 Jun 29; 187(7):409. PubMed ID: 32601928
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.