These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
117 related items for PubMed ID: 36124552
41. Fe-Ni metal-organic frameworks with prominent peroxidase-like activity for the colorimetric detection of Sn2+ ions. Hu Y, Yue C, Wang J, Zhang Y, Fang W, Dang J, Wu Y, Zhao H, Li Z. Analyst; 2020 Sep 28; 145(19):6349-6356. PubMed ID: 32724989 [Abstract] [Full Text] [Related]
43. Binary magnetic metal-organic frameworks composites: a promising affinity probe for highly selective and rapid enrichment of mono- and multi-phosphopeptides. Wang B, Liu B, Yan Y, Tang K, Ding CF. Mikrochim Acta; 2019 Nov 22; 186(12):832. PubMed ID: 31758327 [Abstract] [Full Text] [Related]
44. Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO₂ capture capability. Qian D, Lei C, Hao GP, Li WC, Lu AH. ACS Appl Mater Interfaces; 2012 Nov 22; 4(11):6125-32. PubMed ID: 23072343 [Abstract] [Full Text] [Related]
45. First-principles study of microporous magnets M-MOF-74 (M = Ni, Co, Fe, Mn): the role of metal centers. Zhang Q, Li B, Chen L. Inorg Chem; 2013 Aug 19; 52(16):9356-62. PubMed ID: 23919817 [Abstract] [Full Text] [Related]
46. 2D MOFs with Ni(II), Cu(II), and Co(II) as Efficient Oxygen Evolution Electrocatalysts: Rationalization of Catalytic Performance vs Structure of the MOFs and Potential of the Redox Couples. Goswami A, Ghosh D, Chernyshev VV, Dey A, Pradhan D, Biradha K. ACS Appl Mater Interfaces; 2020 Jul 29; 12(30):33679-33689. PubMed ID: 32633480 [Abstract] [Full Text] [Related]
52. Understanding the Performance of Metal-Organic Frameworks for Modulation of Nitric Oxide Release from S-Nitrosothiols. Ling P, Gao X, Zang X, Sun X, Gao F. Chem Asian J; 2022 Apr 01; 17(7):e202101358. PubMed ID: 35178879 [Abstract] [Full Text] [Related]
53. Characterization of Metal-Organic Frameworks: Unlocking the Potential of Solid-State NMR. Lucier BEG, Chen S, Huang Y. Acc Chem Res; 2018 Feb 20; 51(2):319-330. PubMed ID: 29251909 [Abstract] [Full Text] [Related]
54. In situ semi-transformation from heterometallic MOFs to Fe-Ni LDH/MOF hierarchical architectures for boosted oxygen evolution reaction. Huo J, Wang Y, Yan L, Xue Y, Li S, Hu M, Jiang Y, Zhai QG. Nanoscale; 2020 Jul 21; 12(27):14514-14523. PubMed ID: 32614012 [Abstract] [Full Text] [Related]
56. Low-temperature loading of Cu+ species over porous metal-organic frameworks (MOFs) and adsorptive desulfurization with Cu+-loaded MOFs. Khan NA, Jhung SH. J Hazard Mater; 2012 Oct 30; 237-238():180-5. PubMed ID: 22959132 [Abstract] [Full Text] [Related]
57. Photo-Induced Construction and Recovery of Cu+ Sites in Metal-Organic Frameworks. Li YX, Li KD, Qian XY, Liu XQ, Sun LB. Small; 2023 Oct 30; 19(40):e2302885. PubMed ID: 37264726 [Abstract] [Full Text] [Related]
58. Theoretical and experimental studies on three water-stable, isostructural, paddlewheel based semiconducting metal-organic frameworks. Yang X, Zhang Y, Li F, Guo T, Wu Y, Jin F, Fang M, Lan Y, Li Y, Zhou Y, Zou Z. Dalton Trans; 2017 Jun 27; 46(25):8204-8218. PubMed ID: 28608900 [Abstract] [Full Text] [Related]
60. Mixed-Metal Strategy on Metal-Organic Frameworks (MOFs) for Functionalities Expansion: Co Substitution Induces Aerobic Oxidation of Cyclohexene over Inactive Ni-MOF-74. Sun D, Sun F, Deng X, Li Z. Inorg Chem; 2015 Sep 08; 54(17):8639-43. PubMed ID: 26288128 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]