These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
244 related items for PubMed ID: 36131959
1. Stretchable elastomer composites with segregated filler networks: effect of carbon nanofiller dimensionality. Ke K, Sang Z, Manas-Zloczower I. Nanoscale Adv; 2019 Jun 11; 1(6):2337-2347. PubMed ID: 36131959 [Abstract] [Full Text] [Related]
2. Interface Design Strategy for the Fabrication of Highly Stretchable Strain Sensors. Sang Z, Ke K, Manas-Zloczower I. ACS Appl Mater Interfaces; 2018 Oct 24; 10(42):36483-36492. PubMed ID: 30280558 [Abstract] [Full Text] [Related]
3. Melt Spinning of Highly Stretchable, Electrically Conductive Filament Yarns. Probst H, Katzer K, Nocke A, Hickmann R, Zimmermann M, Cherif C. Polymers (Basel); 2021 Feb 16; 13(4):. PubMed ID: 33669330 [Abstract] [Full Text] [Related]
4. Carbonaceous Filler Type and Content Dependence of the Physical-Chemical and Electromechanical Properties of Thermoplastic Elastomer Polymer Composites. Dios JR, García-Astrain C, Costa P, Viana JC, Lanceros-Méndez S. Materials (Basel); 2019 Apr 30; 12(9):. PubMed ID: 31052175 [Abstract] [Full Text] [Related]
5. 3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane. Kim NP. Polymers (Basel); 2020 May 27; 12(6):. PubMed ID: 32471243 [Abstract] [Full Text] [Related]
6. Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Liu H, Gao J, Huang W, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z. Nanoscale; 2016 Jul 14; 8(26):12977-89. PubMed ID: 27304516 [Abstract] [Full Text] [Related]
7. Preparation and laser sintering of a thermoplastic polyurethane carbon nanotube composite-based pressure sensor. Zhuang Y, Guo Y, Li J, Jiang K, Yu Y, Zhang H, Liu D. RSC Adv; 2020 Jun 19; 10(40):23644-23652. PubMed ID: 35517319 [Abstract] [Full Text] [Related]
8. Fabrication of highly stretchable conductors via morphological control of carbon nanotube network. Lin L, Liu S, Fu S, Zhang S, Deng H, Fu Q. Small; 2013 Nov 11; 9(21):3620-9. PubMed ID: 23630114 [Abstract] [Full Text] [Related]
9. Enhanced Electrical Networks of Stretchable Conductors with Small Fraction of Carbon Nanotube/Graphene Hybrid Fillers. Oh JY, Jun GH, Jin S, Ryu HJ, Hong SH. ACS Appl Mater Interfaces; 2016 Feb 10; 8(5):3319-25. PubMed ID: 26784473 [Abstract] [Full Text] [Related]
10. 3D Printed Thermoelectric Polyurethane/Multiwalled Carbon Nanotube Nanocomposites: A Novel Approach towards the Fabrication of Flexible and Stretchable Organic Thermoelectrics. Tzounis L, Petousis M, Grammatikos S, Vidakis N. Materials (Basel); 2020 Jun 26; 13(12):. PubMed ID: 32604960 [Abstract] [Full Text] [Related]
11. Development of Flexible and Conductive Immiscible Thermoplastic/Elastomer Monofilament for Smart Textiles Applications Using 3D Printing. Eutionnat-Diffo PA, Cayla A, Chen Y, Guan J, Nierstrasz V, Campagne C. Polymers (Basel); 2020 Oct 08; 12(10):. PubMed ID: 33050041 [Abstract] [Full Text] [Related]
12. Thermal, Morphological, Electrical Properties and Touch-Sensor Application of Conductive Carbon Black-Filled Polyamide Composites. Brunella V, Rossatto BG, Scarano D, Cesano F. Nanomaterials (Basel); 2021 Nov 17; 11(11):. PubMed ID: 34835866 [Abstract] [Full Text] [Related]
13. Generic Method to Create Segregated Structures toward Robust, Flexible, Highly Conductive Elastomer Composites. Zhang C, Tang Z, An X, Fang S, Wu S, Guo B. ACS Appl Mater Interfaces; 2021 May 26; 13(20):24154-24163. PubMed ID: 33978407 [Abstract] [Full Text] [Related]
14. Structure and Dielectric Properties of TPU Composite Filled with CNTs@PDA Nanofibers and MXene Nanosheets. Luo Z, Li X, Zhao S, Xu L, Liu L. Polymers (Basel); 2022 May 26; 14(11):. PubMed ID: 35683830 [Abstract] [Full Text] [Related]
15. Laser Treatments for Improving Electrical Conductivity and Piezoresistive Behavior of Polymer⁻Carbon Nanofiller Composites. Caradonna A, Badini C, Padovano E, Veca A, De Meo E, Pietroluongo M. Micromachines (Basel); 2019 Jan 18; 10(1):. PubMed ID: 30669252 [Abstract] [Full Text] [Related]
16. Electrically Conductive Silicone-Based Nanocomposites Incorporated with Carbon Nanotubes and Silver Nanowires for Stretchable Electrodes. Kim TG, Eom HS, Kim JH, Jung JK, Jang KS, Lee SJ. ACS Omega; 2021 Nov 30; 6(47):31876-31890. PubMed ID: 34870010 [Abstract] [Full Text] [Related]
17. A solution-processable and highly flexible conductor of a fluoroelastomer FKM and carbon nanotubes with tuned electrical conductivity and mechanical performance. Shajari S, Rajabian M, Kamkar M, Sudak LJ, Sundararaj U. Soft Matter; 2022 Oct 12; 18(39):7537-7549. PubMed ID: 36148683 [Abstract] [Full Text] [Related]
18. Preparation of CNT/CNF/PDMS/TPU Nanofiber-Based Conductive Films Based on Centrifugal Spinning Method for Strain Sensors. Mei S, Xu B, Wan J, Chen J. Sensors (Basel); 2024 Jun 20; 24(12):. PubMed ID: 38931809 [Abstract] [Full Text] [Related]
19. Silicone Rubber Composites Reinforced by Carbon Nanofillers and Their Hybrids for Various Applications: A Review. Kumar V, Alam MN, Manikkavel A, Song M, Lee DJ, Park SS. Polymers (Basel); 2021 Jul 15; 13(14):. PubMed ID: 34301079 [Abstract] [Full Text] [Related]
20. Effect of multi-walled carbon nanotubes on the physical properties and crystallisation of recycled PET/TPU composites. Fang C, Yang R, Zhang Z, Zhou X, Lei W, Cheng Y, Zhang W, Wang D. RSC Adv; 2018 Feb 23; 8(16):8920-8928. PubMed ID: 35539851 [Abstract] [Full Text] [Related] Page: [Next] [New Search]