These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


277 related items for PubMed ID: 36142369

  • 1. Effects of Nitrogen Supply on Induced Defense in Maize (Zea mays) against Fall Armyworm (Spodoptera frugiperda).
    Wang W, Wang X, Liao H, Feng Y, Guo Y, Shu Y, Wang J.
    Int J Mol Sci; 2022 Sep 09; 23(18):. PubMed ID: 36142369
    [Abstract] [Full Text] [Related]

  • 2. Jasmonic Acid and Salicylic Acid improved resistance against Spodoptera frugiperda Infestation in maize by modulating growth and regulating redox homeostasis.
    Kanwal B, Tanwir S, Ahmad F, Ahmad JN.
    Sci Rep; 2024 Jul 22; 14(1):16823. PubMed ID: 39039220
    [Abstract] [Full Text] [Related]

  • 3. A maize line resistant to herbivory constitutively releases (E) -beta-caryophyllene.
    Smith WE, Shivaji R, Williams WP, Luthe DS, Sandoya GV, Smith CL, Sparks DL, Brown AE.
    J Econ Entomol; 2012 Feb 22; 105(1):120-8. PubMed ID: 22420263
    [Abstract] [Full Text] [Related]

  • 4. Spodoptera frugiperda Caterpillars Suppress Herbivore-Induced Volatile Emissions in Maize.
    De Lange ES, Laplanche D, Guo H, Xu W, Vlimant M, Erb M, Ton J, Turlings TCJ.
    J Chem Ecol; 2020 Mar 22; 46(3):344-360. PubMed ID: 32002720
    [Abstract] [Full Text] [Related]

  • 5. Cowpea volatiles induced by beet armyworm or fall armyworm differentially prime maize plants.
    Kanagendran A, Turlings TCJ.
    J Plant Physiol; 2024 Jan 22; 292():154164. PubMed ID: 38141481
    [Abstract] [Full Text] [Related]

  • 6. Silicon Supplementation of Maize Impacts Fall Armyworm Colonization and Increases Predator Attraction.
    Pereira P, Nascimento AM, de Souza BHS, Peñaflor MFGV.
    Neotrop Entomol; 2021 Aug 22; 50(4):654-661. PubMed ID: 34184235
    [Abstract] [Full Text] [Related]

  • 7. The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack.
    Christensen SA, Nemchenko A, Borrego E, Murray I, Sobhy IS, Bosak L, DeBlasio S, Erb M, Robert CA, Vaughn KA, Herrfurth C, Tumlinson J, Feussner I, Jackson D, Turlings TC, Engelberth J, Nansen C, Meeley R, Kolomiets MV.
    Plant J; 2013 Apr 22; 74(1):59-73. PubMed ID: 23279660
    [Abstract] [Full Text] [Related]

  • 8. Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory.
    Schmelz EA, Alborn HT, Banchio E, Tumlinson JH.
    Planta; 2003 Feb 22; 216(4):665-73. PubMed ID: 12569409
    [Abstract] [Full Text] [Related]

  • 9. Herbivore cues from the fall armyworm (Spodoptera frugiperda) larvae trigger direct defenses in maize.
    Chuang WP, Ray S, Acevedo FE, Peiffer M, Felton GW, Luthe DS.
    Mol Plant Microbe Interact; 2014 May 22; 27(5):461-70. PubMed ID: 24329171
    [Abstract] [Full Text] [Related]

  • 10. Caterpillar attack triggers accumulation of the toxic maize protein RIP2.
    Chuang WP, Herde M, Ray S, Castano-Duque L, Howe GA, Luthe DS.
    New Phytol; 2014 Feb 22; 201(3):928-939. PubMed ID: 24304477
    [Abstract] [Full Text] [Related]

  • 11. 9,10-KODA, an α-ketol produced by the tonoplast-localized 9-lipoxygenase ZmLOX5, plays a signaling role in maize defense against insect herbivory.
    Yuan P, Borrego E, Park YS, Gorman Z, Huang PC, Tolley J, Christensen SA, Blanford J, Kilaru A, Meeley R, Koiwa H, Vidal S, Huffaker A, Schmelz E, Kolomiets MV.
    Mol Plant; 2023 Aug 07; 16(8):1283-1303. PubMed ID: 37434355
    [Abstract] [Full Text] [Related]

  • 12. Contrasting insect attraction and herbivore-induced plant volatile production in maize.
    Block AK, Hunter CT, Rering C, Christensen SA, Meagher RL.
    Planta; 2018 Jul 07; 248(1):105-116. PubMed ID: 29616394
    [Abstract] [Full Text] [Related]

  • 13. Plants on constant alert: elevated levels of jasmonic acid and jasmonate-induced transcripts in caterpillar-resistant maize.
    Shivaji R, Camas A, Ankala A, Engelberth J, Tumlinson JH, Williams WP, Wilkinson JR, Luthe DS.
    J Chem Ecol; 2010 Feb 07; 36(2):179-91. PubMed ID: 20148356
    [Abstract] [Full Text] [Related]

  • 14. Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance.
    Hu L, Ye M, Erb M.
    Plant Cell Environ; 2019 Mar 07; 42(3):959-971. PubMed ID: 30195252
    [Abstract] [Full Text] [Related]

  • 15. (Z)-3-Hexenol induces defense genes and downstream metabolites in maize.
    Farag MA, Fokar M, Abd H, Zhang H, Allen RD, Paré PW.
    Planta; 2005 Apr 07; 220(6):900-9. PubMed ID: 15599762
    [Abstract] [Full Text] [Related]

  • 16. Turnabout Is Fair Play: Herbivory-Induced Plant Chitinases Excreted in Fall Armyworm Frass Suppress Herbivore Defenses in Maize.
    Ray S, Alves PC, Ahmad I, Gaffoor I, Acevedo FE, Peiffer M, Jin S, Han Y, Shakeel S, Felton GW, Luthe DS.
    Plant Physiol; 2016 May 07; 171(1):694-706. PubMed ID: 26979328
    [Abstract] [Full Text] [Related]

  • 17. Flooding and Herbivory Interact to Alter Volatile Organic Compound Emissions in Two Maize Hybrids.
    Ngumbi EN, Ugarte CM.
    J Chem Ecol; 2021 Jul 07; 47(7):707-718. PubMed ID: 34125370
    [Abstract] [Full Text] [Related]

  • 18. Attraction, Feeding Preference, and Performance of Spodoptera frugiperda Larvae (Lepidoptera: Noctuidae) Reared on Two Varieties of Maize.
    De La Rosa-Cancino W, Rojas JC, Cruz-Lopez L, Castillo A, Malo EA.
    Environ Entomol; 2016 Apr 07; 45(2):384-9. PubMed ID: 26802116
    [Abstract] [Full Text] [Related]

  • 19. Molecular Dissection of Early Defense Signaling Underlying Volatile-Mediated Defense Regulation and Herbivore Resistance in Rice.
    Ye M, Glauser G, Lou Y, Erb M, Hu L.
    Plant Cell; 2019 Mar 07; 31(3):687-698. PubMed ID: 30760558
    [Abstract] [Full Text] [Related]

  • 20. Key Genes in the JAZ Signaling Pathway Are Up-Regulated Faster and More Abundantly in Caterpillar-Resistant Maize.
    Han Y, Luthe D.
    J Chem Ecol; 2022 Feb 07; 48(2):179-195. PubMed ID: 34982368
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.