These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
222 related items for PubMed ID: 36144552
1. Production of Bioactive Peptides from Baltic Herring (Clupea harengus membras): Dipeptidyl Peptidase-4 Inhibitory, Antioxidant and Antiproliferative Properties. Mäkinen S, Hiidenhovi J, Huang X, Lima ADS, Azevedo L, Setälä J, Välimaa AL, Mattila P, Granato D. Molecules; 2022 Sep 08; 27(18):. PubMed ID: 36144552 [Abstract] [Full Text] [Related]
2. Investigation on antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activity of Bambara bean protein hydrolysates. Mune Mune MA, Minka SR, Henle T. Food Chem; 2018 Jun 01; 250():162-169. PubMed ID: 29412907 [Abstract] [Full Text] [Related]
3. Comparative study on structural, biological and functional activities of hydrolysates from Adzuki bean (Vigna angularis) and mung bean (Vigna radiata) protein concentrates using Alcalase and Flavourzyme. Karami Z, Butkinaree C, Yingchutrakul Y, Simanon N, Duangmal K. Food Res Int; 2022 Nov 01; 161():111797. PubMed ID: 36192943 [Abstract] [Full Text] [Related]
4. Baltic herring hydrolysates: Identification of peptides, in silico DPP-4 prediction, and their effects on an in vivo mice model of obesity. Wang D, Huang X, Marnila P, Hiidenhovi J, Välimaa AL, Granato D, Mäkinen S. Food Res Int; 2024 Sep 01; 191():114696. PubMed ID: 39059907 [Abstract] [Full Text] [Related]
5. Characterization of Protein Hydrolysates from Fish Discards and By-Products from the North-West Spain Fishing Fleet as Potential Sources of Bioactive Peptides. Henriques A, Vázquez JA, Valcarcel J, Mendes R, Bandarra NM, Pires C. Mar Drugs; 2021 Jun 13; 19(6):. PubMed ID: 34199233 [Abstract] [Full Text] [Related]
6. Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides. Harnedy PA, Parthsarathy V, McLaughlin CM, O'Keeffe MB, Allsopp PJ, McSorley EM, O'Harte FPM, FitzGerald RJ. Food Res Int; 2018 Apr 13; 106():598-606. PubMed ID: 29579965 [Abstract] [Full Text] [Related]
7. Response surface methodology applied to the generation of casein hydrolysates with antioxidant and dipeptidyl peptidase IV inhibitory properties. Nongonierma AB, Maux SL, Esteveny C, FitzGerald RJ. J Sci Food Agric; 2017 Mar 13; 97(4):1093-1101. PubMed ID: 27271791 [Abstract] [Full Text] [Related]
8. Peptide identification in a salmon gelatin hydrolysate with antihypertensive, dipeptidyl peptidase IV inhibitory and antioxidant activities. Neves AC, Harnedy PA, O'Keeffe MB, Alashi MA, Aluko RE, FitzGerald RJ. Food Res Int; 2017 Oct 13; 100(Pt 1):112-120. PubMed ID: 28873669 [Abstract] [Full Text] [Related]
9. Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates. Venuste M, Zhang X, Shoemaker CF, Karangwa E, Abbas S, Kamdem PE. Food Funct; 2013 Apr 30; 4(5):811-20. PubMed ID: 23591974 [Abstract] [Full Text] [Related]
10. Characterisation of the in vitro bioactive properties of alkaline and enzyme extracted brewers' spent grain protein hydrolysates. Connolly A, Cermeño M, Crowley D, O'Callaghan Y, O'Brien NM, FitzGerald RJ. Food Res Int; 2019 Jul 30; 121():524-532. PubMed ID: 31108777 [Abstract] [Full Text] [Related]
11. Bioactivity of hydrolysates obtained from bovine casein using artichoke (Cynara scolymus L.) proteases. Bueno-Gavilá E, Abellán A, Girón-Rodríguez F, Cayuela JM, Salazar E, Gómez R, Tejada L. J Dairy Sci; 2019 Dec 30; 102(12):10711-10723. PubMed ID: 31548055 [Abstract] [Full Text] [Related]
12. Unraveling the biological potential of chicken viscera proteins: a study based on their enzymatic hydrolysis to obtain hydrolysates with antioxidant properties. Amaral YMS, de Castro RJS. Prep Biochem Biotechnol; 2024 Jul 30; 54(6):809-818. PubMed ID: 38153252 [Abstract] [Full Text] [Related]
13. Characterization of peptides with antioxidant activity and antidiabetic potential obtained from chickpea (Cicer arietinum L.) protein hydrolyzates. Quintero-Soto MF, Chávez-Ontiveros J, Garzón-Tiznado JA, Salazar-Salas NY, Pineda-Hidalgo KV, Delgado-Vargas F, López-Valenzuela JA. J Food Sci; 2021 Jul 30; 86(7):2962-2977. PubMed ID: 34076269 [Abstract] [Full Text] [Related]
14. Comparison of enzymatic and pH shift methods to extract protein from whole Baltic herring (Clupea harengus membras) and roach (Rutilus rutilus). Nisov A, Kakko T, Alakomi HL, Lantto R, Honkapää K. Food Chem; 2022 Mar 30; 373(Pt B):131524. PubMed ID: 34782215 [Abstract] [Full Text] [Related]
15. Hypocholesterolaemic and antioxidant activities of chickpea (Cicer arietinum L.) protein hydrolysates. Yust Mdel M, Millán-Linares Mdel C, Alcaide-Hidalgo JM, Millán F, Pedroche J. J Sci Food Agric; 2012 Jul 30; 92(9):1994-2001. PubMed ID: 22246802 [Abstract] [Full Text] [Related]
16. Fish By-Products: A Source of Enzymes to Generate Circular Bioactive Hydrolysates. Borges S, Odila J, Voss G, Martins R, Rosa A, Couto JA, Almeida A, Pintado M. Molecules; 2023 Jan 24; 28(3):. PubMed ID: 36770822 [Abstract] [Full Text] [Related]
17. Generation, Characterisation and Identification of Bioactive Peptides from Mesopelagic Fish Protein Hydrolysates Using In Silico and In Vitro Approaches. Hayes M, Naik A, Mora L, Iñarra B, Ibarruri J, Bald C, Cariou T, Reid D, Gallagher M, Dragøy R, Galino J, Deyà A, Albrektsen S, Thoresen L, Solstad RG. Mar Drugs; 2024 Jun 27; 22(7):. PubMed ID: 39057406 [Abstract] [Full Text] [Related]
18. Use of Different Proteases to Obtain Flaxseed Protein Hydrolysates with Antioxidant Activity. Karamać M, Kosińska-Cagnazzo A, Kulczyk A. Int J Mol Sci; 2016 Jun 29; 17(7):. PubMed ID: 27367678 [Abstract] [Full Text] [Related]
19. Biological activities of the protein hydrolysate obtained from two fishes common in the fisheries bycatch. Rocha Camargo T, Ramos P, Monserrat JM, Prentice C, Fernandes CJC, Zambuzzi WF, Valenti WC. Food Chem; 2021 Apr 16; 342():128361. PubMed ID: 33077277 [Abstract] [Full Text] [Related]
20. Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin-pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV. Mojica L, Chen K, de Mejía EG. J Food Sci; 2015 Jan 16; 80(1):H188-98. PubMed ID: 25495131 [Abstract] [Full Text] [Related] Page: [Next] [New Search]