These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 36146394

  • 1. Processing Photoplethysmograms Recorded by Smartwatches to Improve the Quality of Derived Pulse Rate Variability.
    Polak AG, Klich B, Saganowski S, Prucnal MA, Kazienko P.
    Sensors (Basel); 2022 Sep 17; 22(18):. PubMed ID: 36146394
    [Abstract] [Full Text] [Related]

  • 2. Effects of using different algorithms and fiducial points for the detection of interbeat intervals, and different sampling rates on the assessment of pulse rate variability from photoplethysmography.
    Mejía-Mejía E, May JM, Kyriacou PA.
    Comput Methods Programs Biomed; 2022 May 17; 218():106724. PubMed ID: 35255373
    [Abstract] [Full Text] [Related]

  • 3. A low-complexity PPG pulse detection method for accurate estimation of the pulse rate variability (PRV) during sudden decreases in the signal amplitude.
    Argüello Prada EJ, Paredes Higinio A.
    Physiol Meas; 2020 Apr 16; 41(3):035001. PubMed ID: 32079008
    [Abstract] [Full Text] [Related]

  • 4. Efficient noise-tolerant estimation of heart rate variability using single-channel photoplethysmography.
    Firoozabadi R, Helfenbein ED, Babaeizadeh S.
    J Electrocardiol; 2017 Apr 16; 50(6):841-846. PubMed ID: 28918214
    [Abstract] [Full Text] [Related]

  • 5. Optimal fiducial points for pulse rate variability analysis from forehead and finger photoplethysmographic signals.
    Peralta E, Lazaro J, Bailon R, Marozas V, Gil E.
    Physiol Meas; 2019 Feb 26; 40(2):025007. PubMed ID: 30669123
    [Abstract] [Full Text] [Related]

  • 6. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
    Wu HT, Lewis GF, Davila MI, Daubechies I, Porges SW.
    Methods Inf Med; 2016 Oct 17; 55(5):463-472. PubMed ID: 27626806
    [Abstract] [Full Text] [Related]

  • 7. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor.
    Salehizadeh SM, Dao D, Bolkhovsky J, Cho C, Mendelson Y, Chon KH.
    Sensors (Basel); 2015 Dec 23; 16(1):. PubMed ID: 26703618
    [Abstract] [Full Text] [Related]

  • 8. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals.
    Bolanos M, Nazeran H, Haltiwanger E.
    Conf Proc IEEE Eng Med Biol Soc; 2006 Dec 23; 2006():4289-94. PubMed ID: 17946618
    [Abstract] [Full Text] [Related]

  • 9. Pulse rate variability: a new biomarker, not a surrogate for heart rate variability.
    Yuda E, Shibata M, Ogata Y, Ueda N, Yambe T, Yoshizawa M, Hayano J.
    J Physiol Anthropol; 2020 Aug 18; 39(1):21. PubMed ID: 32811571
    [Abstract] [Full Text] [Related]

  • 10. Wavelet Analysis and Self-Similarity of Photoplethysmography Signals for HRV Estimation and Quality Assessment.
    Neshitov A, Tyapochkin K, Smorodnikova E, Pravdin P.
    Sensors (Basel); 2021 Oct 13; 21(20):. PubMed ID: 34696011
    [Abstract] [Full Text] [Related]

  • 11. Effect of Filtering of Photoplethysmography Signals in Pulse Rate Variability Analysis.
    Mejia-Mejia E, May JM, Kyriacou PA.
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov 13; 2021():5500-5503. PubMed ID: 34892370
    [Abstract] [Full Text] [Related]

  • 12. Ambient temperature effect on pulse rate variability as an alternative to heart rate variability in young adult.
    Shin H.
    J Clin Monit Comput; 2016 Dec 13; 30(6):939-948. PubMed ID: 26511754
    [Abstract] [Full Text] [Related]

  • 13. Analysis of a Pulse Rate Variability Measurement Using a Smartphone Camera.
    Bánhalmi A, Borbás J, Fidrich M, Bilicki V, Gingl Z, Rudas L.
    J Healthc Eng; 2018 Dec 13; 2018():4038034. PubMed ID: 29666670
    [Abstract] [Full Text] [Related]

  • 14. Assessing the Quality of Heart Rate Variability Estimated from Wrist and Finger PPG: A Novel Approach Based on Cross-Mapping Method.
    Nardelli M, Vanello N, Galperti G, Greco A, Scilingo EP.
    Sensors (Basel); 2020 Jun 02; 20(11):. PubMed ID: 32498403
    [Abstract] [Full Text] [Related]

  • 15. Signal quality measures for pulse oximetry through waveform morphology analysis.
    Sukor JA, Redmond SJ, Lovell NH.
    Physiol Meas; 2011 Mar 02; 32(3):369-84. PubMed ID: 21330696
    [Abstract] [Full Text] [Related]

  • 16. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals.
    Jeyhani V, Mahdiani S, Peltokangas M, Vehkaoja A.
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Mar 02; 2015():5952-5. PubMed ID: 26737647
    [Abstract] [Full Text] [Related]

  • 17. Relationships between heart-rate variability and pulse-rate variability obtained from video-PPG signal using ZCA.
    Iozzia L, Cerina L, Mainardi L.
    Physiol Meas; 2016 Nov 02; 37(11):1934-1944. PubMed ID: 27681456
    [Abstract] [Full Text] [Related]

  • 18. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises.
    Pankaj, Kumar A, Komaragiri R, Kumar M.
    Comput Biol Med; 2022 Feb 02; 141():105081. PubMed ID: 34952340
    [Abstract] [Full Text] [Related]

  • 19. A hybrid denoising approach for PPG signals utilizing variational mode decomposition and improved wavelet thresholding.
    Hu Q, Li M, Jiang L, Liu M.
    Technol Health Care; 2024 Feb 02; 32(4):2793-2814. PubMed ID: 38517823
    [Abstract] [Full Text] [Related]

  • 20. Heart-rate tuned comb filters for processing photoplethysmogram (PPG) signals in pulse oximetry.
    Alkhoury L, Choi JW, Wang C, Rajasekar A, Acharya S, Mahoney S, Shender BS, Hrebien L, Kam M.
    J Clin Monit Comput; 2021 Aug 02; 35(4):797-813. PubMed ID: 32556842
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.