These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


158 related items for PubMed ID: 36149483

  • 1. Efficient aerobic fermentation of gluconic acid by high tension oxygen supply strategy with reusable Gluconobacter oxydans HG19 cells.
    Lian Z, Dai L, Zhang R, Liu Y, Zhou X, Xu Y.
    Bioprocess Biosyst Eng; 2022 Nov; 45(11):1849-1855. PubMed ID: 36149483
    [Abstract] [Full Text] [Related]

  • 2. Directional enhancement of 2-keto-gluconic acid production from enzymatic hydrolysate by acetic acid-mediated bio-oxidation with Gluconobacter oxydans.
    Dai L, Jiang W, Jia R, Zhou X, Xu Y.
    Bioresour Technol; 2022 Mar; 348():126811. PubMed ID: 35131459
    [Abstract] [Full Text] [Related]

  • 3. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K, Mao X, Liu L, Lin J, Sun M, Wei D, Yang S.
    Microb Cell Fact; 2016 Jul 09; 15(1):121. PubMed ID: 27392695
    [Abstract] [Full Text] [Related]

  • 4. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation.
    Yuan J, Wu M, Lin J, Yang L.
    BMC Biotechnol; 2016 May 17; 16(1):42. PubMed ID: 27189063
    [Abstract] [Full Text] [Related]

  • 5. Continuous co-production of biomass and bio-oxidized metabolite (sorbose) using Gluconobacter oxydans in a high-oxygen tension bioreactor.
    Zhou X, Hua X, Zhou X, Xu Y, Zhang W.
    Bioresour Technol; 2019 Apr 17; 277():221-224. PubMed ID: 30658939
    [Abstract] [Full Text] [Related]

  • 6. Efficient coproduction of gluconic acid and xylonic acid from lignocellulosic hydrolysate by Zn(II)-selective inhibition on whole-cell catalysis by Gluconobacter oxydans.
    Zhou X, Zhou X, Huang L, Cao R, Xu Y.
    Bioresour Technol; 2017 Nov 17; 243():855-859. PubMed ID: 28724257
    [Abstract] [Full Text] [Related]

  • 7. Improvement of fermentation performance of Gluconobacter oxydans by combination of enhanced oxygen mass transfer in compressed-oxygen-supplied sealed system and cell-recycle technique.
    Zhou X, Zhou X, Xu Y.
    Bioresour Technol; 2017 Nov 17; 244(Pt 1):1137-1141. PubMed ID: 28863996
    [Abstract] [Full Text] [Related]

  • 8. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria.
    Sainz F, Navarro D, Mateo E, Torija MJ, Mas A.
    Int J Food Microbiol; 2016 Apr 02; 222():40-7. PubMed ID: 26848948
    [Abstract] [Full Text] [Related]

  • 9. [Optimization of the fermentation conditions for 5-keto-D-gluconic acid production].
    Li B, Pan H, Sun W, Cheng Y, Xie Z, Zhang J.
    Sheng Wu Gong Cheng Xue Bao; 2014 Sep 02; 30(9):1486-90. PubMed ID: 25720164
    [Abstract] [Full Text] [Related]

  • 10. Unique glucose oxidation catalysis of Gluconobacter oxydans constitutes an efficient cellulosic gluconic acid fermentation free of inhibitory compounds disturbance.
    Zhou P, Yao R, Zhang H, Bao J.
    Biotechnol Bioeng; 2019 Sep 02; 116(9):2191-2199. PubMed ID: 31081135
    [Abstract] [Full Text] [Related]

  • 11. High-yield production of 5-keto-D-gluconic acid via regulated fermentation strategy of Gluconobacter oxydans and its conversion to L-(+)-tartaric acid.
    Sheng Z, Li Y, Wang J.
    Heliyon; 2024 Sep 15; 10(17):e36527. PubMed ID: 39281443
    [Abstract] [Full Text] [Related]

  • 12. Valorization of Cheese Whey Powder by Two-Step Fermentation for Gluconic Acid and Ethanol Preparation.
    Zhang R, Li F, Liu X, Zhou X, Jiang K.
    Appl Biochem Biotechnol; 2024 Aug 15; 196(8):5391-5402. PubMed ID: 38158487
    [Abstract] [Full Text] [Related]

  • 13. [Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].
    Tan Z, Wang H, Wei Y, Li Y, Zhong C, Jia S.
    Sheng Wu Gong Cheng Xue Bao; 2014 Jan 15; 30(1):76-82. PubMed ID: 24818481
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation.
    Merfort M, Herrmann U, Ha SW, Elfari M, Bringer-Meyer S, Görisch H, Sahm H.
    Biotechnol J; 2006 May 15; 1(5):556-63. PubMed ID: 16892291
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.