These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
236 related items for PubMed ID: 36152932
1. Engineering nucleotide sugar synthesis pathways for independent and simultaneous modulation of N-glycan galactosylation and fucosylation in CHO cells. Prabhu A, Shanmugam D, Gadgil M. Metab Eng; 2022 Nov; 74():61-71. PubMed ID: 36152932 [Abstract] [Full Text] [Related]
2. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Hills AE, Patel A, Boyd P, James DC. Biotechnol Bioeng; 2001 Oct 20; 75(2):239-51. PubMed ID: 11536148 [Abstract] [Full Text] [Related]
3. Generation of FX-/- and Gmds-/- CHOZN host cell lines for the production of afucosylated therapeutic antibodies. Liu W, Padmashali R, Monzon OQ, Lundberg D, Jin S, Dwyer B, Lee YJ, Korde A, Park S, Pan C, Zhang B. Biotechnol Prog; 2021 Jan 20; 37(1):e3061. PubMed ID: 32748555 [Abstract] [Full Text] [Related]
4. FX knockout CHO hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and comparable product quality. Louie S, Haley B, Marshall B, Heidersbach A, Yim M, Brozynski M, Tang D, Lam C, Petryniak B, Shaw D, Shim J, Miller A, Lowe JB, Snedecor B, Misaghi S. Biotechnol Bioeng; 2017 Mar 20; 114(3):632-644. PubMed ID: 27666939 [Abstract] [Full Text] [Related]
5. A novel bicistronic gene design couples stable cell line selection with a fucose switch in a designer CHO host to produce native and afucosylated glycoform antibodies. Roy G, Martin T, Barnes A, Wang J, Jimenez RB, Rice M, Li L, Feng H, Zhang S, Chaerkady R, Wu H, Marelli M, Hatton D, Zhu J, Bowen MA. MAbs; 2018 Apr 20; 10(3):416-430. PubMed ID: 29400603 [Abstract] [Full Text] [Related]
6. Fucosyltransferases produce N-glycans containing core l-galactose. Ohashi H, Ohashi T, Kajiura H, Misaki R, Kitamura S, Fujiyama K. Biochem Biophys Res Commun; 2017 Jan 29; 483(1):658-663. PubMed ID: 27993676 [Abstract] [Full Text] [Related]
10. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions. Wang Q, Wang T, Zhang R, Yang S, McFarland KS, Chung CY, Jia H, Wang LX, Cipollo JF, Betenbaugh MJ. Biotechnol Bioeng; 2022 Jan 29; 119(1):102-117. PubMed ID: 34647616 [Abstract] [Full Text] [Related]
11. Facile Modulation of Antibody Fucosylation with Small Molecule Fucostatin Inhibitors and Cocrystal Structure with GDP-Mannose 4,6-Dehydratase. Allen JG, Mujacic M, Frohn MJ, Pickrell AJ, Kodama P, Bagal D, San Miguel T, Sickmier EA, Osgood S, Swietlow A, Li V, Jordan JB, Kim KW, Rousseau AC, Kim YJ, Caille S, Achmatowicz M, Thiel O, Fotsch CH, Reddy P, McCarter JD. ACS Chem Biol; 2016 Oct 21; 11(10):2734-2743. PubMed ID: 27434622 [Abstract] [Full Text] [Related]
12. Production of afucosylated antibodies in CHO cells by coexpression of an anti-FUT8 intrabody. Joubert S, Guimond J, Perret S, Malenfant F, Elahi SM, Marcil A, Parat M, Gilbert M, Lenferink AEG, Baardsnes J, Durocher Y. Biotechnol Bioeng; 2022 Aug 21; 119(8):2206-2220. PubMed ID: 35509261 [Abstract] [Full Text] [Related]
13. Glycoengineering of therapeutic glycoproteins: in vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues. Raju TS, Briggs JB, Chamow SM, Winkler ME, Jones AJ. Biochemistry; 2001 Jul 31; 40(30):8868-76. PubMed ID: 11467948 [Abstract] [Full Text] [Related]
14. Combinatorial genome and protein engineering yields monoclonal antibodies with hypergalactosylation from CHO cells. Chung CY, Wang Q, Yang S, Ponce SA, Kirsch BJ, Zhang H, Betenbaugh MJ. Biotechnol Bioeng; 2017 Dec 31; 114(12):2848-2856. PubMed ID: 28926673 [Abstract] [Full Text] [Related]
15. Zinc supplementation decreases galactosylation of recombinant IgG in CHO cells. Prabhu A, Gadre R, Gadgil M. Appl Microbiol Biotechnol; 2018 Jul 31; 102(14):5989-5999. PubMed ID: 29749563 [Abstract] [Full Text] [Related]
16. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies. Aoyama M, Hashii N, Tsukimura W, Osumi K, Harazono A, Tada M, Kiyoshi M, Matsuda A, Ishii-Watabe A. MAbs; 2019 Jul 31; 11(5):826-836. PubMed ID: 30990348 [Abstract] [Full Text] [Related]
17. Supplementing glycosylation: A review of applying nucleotide-sugar precursors to growth medium to affect therapeutic recombinant protein glycoform distributions. Blondeel EJM, Aucoin MG. Biotechnol Adv; 2018 Jul 31; 36(5):1505-1523. PubMed ID: 29913209 [Abstract] [Full Text] [Related]
18. CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation. Grainger RK, James DC. Biotechnol Bioeng; 2013 Nov 31; 110(11):2970-83. PubMed ID: 23737295 [Abstract] [Full Text] [Related]
19. Comparison of two glycoengineering strategies to control the fucosylation of a monoclonal antibody. Mishra N, Spearman M, Donald L, Perreault H, Butler M. J Biotechnol; 2020 Nov 31; 324S():100015. PubMed ID: 34154738 [Abstract] [Full Text] [Related]
20. A metabolic inhibitor blocks cellular fucosylation and enables production of afucosylated antibodies. Gilormini PA, Thota VN, Fers-Lidou A, Ashmus RA, Nodwell M, Brockerman J, Kuo CW, Wang Y, Gray TE, Nitin, McDonagh AW, Guu SY, Ertunc N, Yeo D, Zandberg WF, Khoo KH, Britton R, Vocadlo DJ. Proc Natl Acad Sci U S A; 2024 Jul 02; 121(27):e2314026121. PubMed ID: 38917011 [Abstract] [Full Text] [Related] Page: [Next] [New Search]