These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
217 related items for PubMed ID: 36155041
21. Incorporation of Cu into Goethite Stimulates Oxygen Activation by Surface-Bound Fe(II) for Enhanced As(III) Oxidative Transformation. Hong Z, Li F, Borch T, Shi Q, Fang L. Environ Sci Technol; 2023 Feb 07; 57(5):2162-2174. PubMed ID: 36703566 [Abstract] [Full Text] [Related]
22. Hydration/expansion and cation charge compensation modulate the Brønsted basicity of distorted clay water. Cervini-Silva J, Larson RA, Stucki JW. Langmuir; 2006 Mar 28; 22(7):2961-5. PubMed ID: 16548541 [Abstract] [Full Text] [Related]
23. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals. Neumann A, Wu L, Li W, Beard BL, Johnson CM, Rosso KM, Frierdich AJ, Scherer MM. Environ Sci Technol; 2015 Mar 03; 49(5):2786-95. PubMed ID: 25671351 [Abstract] [Full Text] [Related]
25. Mechanistic Insight into Humic Acid-Enhanced Hydroxyl Radical Production from Fe(II)-Bearing Clay Mineral Oxygenation. Yu C, Zhang Y, Lu Y, Qian A, Zhang P, Cui Y, Yuan S. Environ Sci Technol; 2021 Oct 05; 55(19):13366-13375. PubMed ID: 34551244 [Abstract] [Full Text] [Related]
26. Structural Fe(II)-induced generation of reactive oxygen species on magnetite surface for aqueous As(III) oxidation during oxygen activation. Meng F, Tong H, Feng C, Huang Z, Wu P, Zhou J, Hua J, Wu F, Liu C. Water Res; 2024 Mar 15; 252():121232. PubMed ID: 38309068 [Abstract] [Full Text] [Related]
30. Role of interfacial electron transfer reactions on sulfamethoxazole degradation by reduced nontronite activating H2O2. Cui HJ, Ning Y, Wu C, Peng W, Cheng D, Yin L, Zhou W, Liao W. J Environ Sci (China); 2023 Feb 15; 124():688-698. PubMed ID: 36182174 [Abstract] [Full Text] [Related]
31. Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds as kinetic probes. Neumann A, Hofstetter TB, Lüssi M, Cirpka OA, Petit S, Schwarzenbach RP. Environ Sci Technol; 2008 Nov 15; 42(22):8381-7. PubMed ID: 19068821 [Abstract] [Full Text] [Related]
32. Inhibition of Extracellular Enzyme Activity by Reactive Oxygen Species upon Oxygenation of Reduced Iron-Bearing Minerals. Sheng Y, Hu J, Kukkadapu R, Guo D, Zeng Q, Dong H. Environ Sci Technol; 2023 Feb 28; 57(8):3425-3433. PubMed ID: 36795461 [Abstract] [Full Text] [Related]
34. Anaerobic oxidation of arsenite by bioreduced nontronite. Zhao Z, Meng Y, Wang Y, Lin L, Xie F, Luan F. J Environ Sci (China); 2021 Dec 28; 110():21-27. PubMed ID: 34593191 [Abstract] [Full Text] [Related]
35. Insights into phenanthrene attenuation by hydroxyl radicals from reduced iron-bearing mineral oxygenation. Wang L, Du H, Xu H, Li H, Li L. J Hazard Mater; 2022 Oct 05; 439():129658. PubMed ID: 35901635 [Abstract] [Full Text] [Related]
36. The formation of •OH with Fe-bearing smectite clays and low-molecular-weight thiols: Implication of As(III) removal. Sun Z, Huang M, Liu C, Fang G, Chen N, Zhou D, Gao J. Water Res; 2020 May 01; 174():115631. PubMed ID: 32114017 [Abstract] [Full Text] [Related]
37. Iron minerals enhance Fe(II)-mediated abiotic As(III) oxidation. Zhang X, Fu Q, Hu H, Zhu J, Fang L. Chemosphere; 2024 Sep 01; 363():142913. PubMed ID: 39053775 [Abstract] [Full Text] [Related]
39. Insights into the degradation process of phenol during in-situ thermal desorption: The overlooked oxidation of hydroxyl radicals from oxygenation of reduced Fe-bearing clay minerals. Zhang W, Li X, Shen J, Sun Z, Zhou X, Li F, Ma F, Gu Q. J Hazard Mater; 2023 Feb 15; 444(Pt A):130401. PubMed ID: 36403451 [Abstract] [Full Text] [Related]
40. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface. Williams AG, Scherer MM. Environ Sci Technol; 2004 Sep 15; 38(18):4782-90. PubMed ID: 15487788 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]