These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 36157748
1. Transparent Nanocomposites Comprising Ligand-Exchanged CuInS2/ZnS Quantum Dots and UV-Cured Resin for Wavelength Converters. Shiraishi M, Iso Y, Isobe T. ACS Omega; 2022 Sep 20; 7(37):33039-33045. PubMed ID: 36157748 [Abstract] [Full Text] [Related]
2. Eco-Friendly Electrophoretic Deposition of Fluorescent Nanocomposite Films in an Aqueous Dispersion of Hydrophilized Core/Shell CuInS2/ZnS Quantum Dots for Optoelectronic Applications. Morimoto A, Iso Y, Isobe T. ACS Appl Mater Interfaces; 2024 Feb 14; 16(6):7780-7789. PubMed ID: 38315976 [Abstract] [Full Text] [Related]
3. Photoluminescence color stability of green-emitting InP/ZnS core/shell quantum dots embedded in silica prepared via hydrophobic routes. Watanabe T, Iso Y, Isobe T, Sasaki H. RSC Adv; 2018 Jul 16; 8(45):25526-25533. PubMed ID: 35539768 [Abstract] [Full Text] [Related]
4. Simple Synthesis of CuInS2/ZnS Core/Shell Quantum Dots for White Light-Emitting Diodes. Li H, Jiang X, Wang A, Chu X, Du Z. Front Chem; 2020 Jul 16; 8():669. PubMed ID: 33195004 [Abstract] [Full Text] [Related]
5. Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media. Heyne B, Arlt K, Geßner A, Richter AF, Döblinger M, Feldmann J, Taubert A, Wedel A. Nanomaterials (Basel); 2020 Sep 17; 10(9):. PubMed ID: 32957490 [Abstract] [Full Text] [Related]
7. Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template. Parveen S, Paul KK, Das R, Giri PK. J Colloid Interface Sci; 2019 Mar 15; 539():619-633. PubMed ID: 30612025 [Abstract] [Full Text] [Related]
8. Acid-Base Reaction-Assisted Quantum Dot Patterning via Ligand Engineering and Photolithography. Bae JH, Kim S, Ahn J, Shin C, Jung BK, Lee YM, Hong YK, Kim W, Ha DH, Ng TN, Kim J, Oh SJ. ACS Appl Mater Interfaces; 2022 Oct 26; 14(42):47831-47840. PubMed ID: 36255043 [Abstract] [Full Text] [Related]
9. Aqueous Synthesis of DNA-Functionalized Near-Infrared AgInS2/ZnS Core/Shell Quantum Dots. Delices A, Moodelly D, Hurot C, Hou Y, Ling WL, Saint-Pierre C, Gasparutto D, Nogues G, Reiss P, Kheng K. ACS Appl Mater Interfaces; 2020 Sep 30; 12(39):44026-44038. PubMed ID: 32840358 [Abstract] [Full Text] [Related]
10. Eco-friendly synthesis of CuInS2 and CuInS2@ZnS quantum dots and their effect on enzyme activity of lysozyme. Mir IA, Das K, Akhter T, Ranjan R, Patel R, Bohidar HB. RSC Adv; 2018 Aug 24; 8(53):30589-30599. PubMed ID: 35546847 [Abstract] [Full Text] [Related]
11. Fabrication of highly luminescent and concentrated quantum dot/poly(methyl methacrylate) nanocomposites by matrix-free methods. Yoon C, Kim HJ, Kim MH, Shin K, Kim YJ, Lee K. Nanotechnology; 2017 Oct 06; 28(40):405203. PubMed ID: 28805648 [Abstract] [Full Text] [Related]
12. Effects of CdSe and CdSe/ZnS Core/Shell Quantum Dots on Singlet Oxygen Production and Cell Toxicity. Duong HD, Yang S, Seo YW, Rhee JI. J Nanosci Nanotechnol; 2018 Mar 01; 18(3):1568-1576. PubMed ID: 29448631 [Abstract] [Full Text] [Related]
13. Exchange of Thiol Ligands on CuInS2 Quantum Dots in High Boiling Solvents. Koyasu S, Ikeda H, Ishigaki T. Langmuir; 2024 Sep 03; 40(35):18466-18472. PubMed ID: 39163737 [Abstract] [Full Text] [Related]
14. Passivation and Interlayer Effect of Zr(i-PrO)4 on Green CuGaS2/ZnS/Zr(i-PrO)4@Al2O3 and Red CuInS2/ZnS/Zr(i-PrO)4@Al2O3 QD Hybrid Powders. Ko M, Yoon S, Eo YJ, Lee KN, Do YR. Nanoscale Res Lett; 2022 Nov 07; 17(1):106. PubMed ID: 36344881 [Abstract] [Full Text] [Related]
15. Stable aqueous ZnS quantum dots obtained using (3-mercaptopropyl)trimethoxysilane as a capping molecule. Li H, Shih WY, Shih WH. Nanotechnology; 2007 Dec 12; 18(49):495605. PubMed ID: 20442479 [Abstract] [Full Text] [Related]
16. InP/ZnS-graphene oxide and reduced graphene oxide nanocomposites as fascinating materials for potential optoelectronic applications. Samal M, Mohapatra P, Subbiah R, Lee CL, Anass B, Kim JA, Kim T, Yi DK. Nanoscale; 2013 Oct 21; 5(20):9793-805. PubMed ID: 23963403 [Abstract] [Full Text] [Related]
17. Sensitization enhancement of europium in ZnSe/ZnS core/shell quantum dots induced by efficient energy transfer. Liu N, Xu L, Wang H, Xu J, Su W, Ma Z, Chen K. Luminescence; 2014 Dec 21; 29(8):1095-101. PubMed ID: 24898670 [Abstract] [Full Text] [Related]
18. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation. Lim M, Lee W, Bang G, Lee WJ, Park Y, Kwon Y, Jung Y, Kim S, Bang J. Nanoscale; 2019 May 30; 11(21):10463-10471. PubMed ID: 31112192 [Abstract] [Full Text] [Related]
19. Microfluidic chip enabled one-step synthesis of biofunctionalized CuInS2/ZnS quantum dots. Hu S, Zhang B, Zeng S, Liu L, Yong KT, Ma H, Tang Y. Lab Chip; 2020 Aug 11; 20(16):3001-3010. PubMed ID: 32697260 [Abstract] [Full Text] [Related]