These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
127 related items for PubMed ID: 36169842
1. Multi-temporal analysis of inland water level change using ICESat-2 ATL-13 data in lakes and dams. Narin OG, Abdikan S. Environ Sci Pollut Res Int; 2023 Feb; 30(6):15364-15376. PubMed ID: 36169842 [Abstract] [Full Text] [Related]
2. Evaluating the Performance of Seven Ongoing Satellite Altimetry Missions for Measuring Inland Water Levels of the Great Lakes. An Z, Chen P, Tang F, Yang X, Wang R, Wang Z. Sensors (Basel); 2022 Dec 12; 22(24):. PubMed ID: 36560086 [Abstract] [Full Text] [Related]
3. ICESat-2 Early Mission Synopsis and Observatory Performance. Magruder L, Neumann T, Kurtz N. Earth Space Sci; 2021 May 12; 8(5):e2020EA001555. PubMed ID: 34268445 [Abstract] [Full Text] [Related]
4. Determination of long-term volume change in lakes by integration of UAV and satellite data: the case of Lake Burdur in Türkiye. Kaya Y, Sanli FB, Abdikan S. Environ Sci Pollut Res Int; 2023 Nov 12; 30(55):117729-117747. PubMed ID: 37872337 [Abstract] [Full Text] [Related]
5. A Dual-Threshold Algorithm for Ice-Covered Lake Water Level Retrieval Using Sentinel-3 SAR Altimetry Waveforms. Tang F, Chen P, An Z, Xiong M, Chen H, Qiu L. Sensors (Basel); 2023 Dec 09; 23(24):. PubMed ID: 38139570 [Abstract] [Full Text] [Related]
6. The Ice, Cloud, and Land Elevation Satellite - 2 Mission: A Global Geolocated Photon Product Derived From the Advanced Topographic Laser Altimeter System. Neumann TA, Martino AJ, Markus T, Bae S, Bock MR, Brenner AC, Brunt KM, Cavanaugh J, Fernandes ST, Hancock DW, Harbeck K, Lee J, Kurtz NT, Luers PJ, Luthcke SB, Magruder L, Pennington TA, Ramos-Izquierdo L, Rebold T, Skoog J, Thomas TC. Remote Sens Environ; 2019 Nov 01; 233():. PubMed ID: 31708597 [Abstract] [Full Text] [Related]
7. Inland and Near Shore Water Profiles Derived from the High Altitude Multiple Altimeter Beam Experimental Lidar (MABEL). Jasinski MF, Stoll JD, Cook WB, Ondrusek M, Stengel E, Brunt K. J Coast Res; 2016 Nov 01; 76(sp1):44-55. PubMed ID: 31708604 [Abstract] [Full Text] [Related]
8. Analysis of water level variation of lakes and reservoirs in Xinjiang, China using ICESat laser altimetry data (2003-2009). Ye Z, Liu H, Chen Y, Shu S, Wu Q, Wang S. PLoS One; 2017 Nov 01; 12(9):e0183800. PubMed ID: 28873094 [Abstract] [Full Text] [Related]
9. Evaluation of trophic state for inland waters through combining Forel-Ule Index and inherent optical properties. Liu Y, Wu H, Wang S, Chen X, Kimball JS, Zhang C, Gao H, Guo P. Sci Total Environ; 2022 May 10; 820():153316. PubMed ID: 35066030 [Abstract] [Full Text] [Related]
10. Estimation of dissolved organic carbon from inland waters at a large scale using satellite data and machine learning methods. Harkort L, Duan Z. Water Res; 2023 Feb 01; 229():119478. PubMed ID: 36527868 [Abstract] [Full Text] [Related]
11. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Roland F, Huszar VL, Farjalla V, Enrich-Prast A, Amado AM, Ometto JP. Braz J Biol; 2012 Aug 01; 72(3 Suppl):709-22. PubMed ID: 23011300 [Abstract] [Full Text] [Related]
12. Assessment of temporal variations of water quality in inland water bodies using atmospheric corrected satellite remotely sensed image data. Hadjimitsis DG, Clayton C. Environ Monit Assess; 2009 Dec 01; 159(1-4):281-92. PubMed ID: 19067211 [Abstract] [Full Text] [Related]
13. Satellite and UAV-based remote sensing for assessing the flooding risk from Tibetan lake expansion and optimizing the village relocation site. Cheng J, Song C, Liu K, Fan C, Ke L, Chen T, Zhan P, Yao J. Sci Total Environ; 2022 Jan 01; 802():149928. PubMed ID: 34464806 [Abstract] [Full Text] [Related]
14. An improved algorithm for estimating the Secchi disk depth of inland waters across China based on Sentinel-2 MSI data. Qin Z, Wen Y, Jiang J, Sun Q. Environ Sci Pollut Res Int; 2023 Mar 01; 30(14):41537-41552. PubMed ID: 36633749 [Abstract] [Full Text] [Related]
15. Quantifying Surface-Height Change Over a Periglacial Environment With ICESat-2 Laser Altimetry. Michaelides RJ, Bryant MB, Siegfried MR, Borsa AA. Earth Space Sci; 2021 Aug 01; 8(8):e2020EA001538. PubMed ID: 34595326 [Abstract] [Full Text] [Related]
16. A comparative study of satellite altimetry-based and DEM-based methods for estimating lake water volume changes. Li H, Chen J, Cao L, Liu W, Duan Z. Water Sci Technol; 2024 Apr 01; 89(8):1913-1927. PubMed ID: 38678399 [No Abstract] [Full Text] [Related]
17. Analyzing variation of water inflow to inland lakes under climate change: Integrating deep learning and time series data mining. Wang H, Li Y, Huang G, Ma Y, Zhang Q, Li Y. Environ Res; 2024 Oct 15; 259():119478. PubMed ID: 38917931 [Abstract] [Full Text] [Related]
18. An Alternative Approach for Registration of High-Resolution Satellite Optical Imagery and ICESat Laser Altimetry Data. Liu S, Lv Y, Tong X, Xie H, Liu J, Chen L. Sensors (Basel); 2016 Nov 27; 16(12):. PubMed ID: 27898048 [Abstract] [Full Text] [Related]
19. Methane and carbon dioxide emissions from inland waters in India - implications for large scale greenhouse gas balances. Panneer Selvam B, Natchimuthu S, Arunachalam L, Bastviken D. Glob Chang Biol; 2014 Nov 27; 20(11):3397-407. PubMed ID: 24623552 [Abstract] [Full Text] [Related]
20. Ground elevation accuracy verification of ICESat-2 data: a case study in Alaska, USA. Wang C, Zhu X, Nie S, Xi X, Li D, Zheng W, Chen S. Opt Express; 2019 Dec 23; 27(26):38168-38179. PubMed ID: 31878588 [Abstract] [Full Text] [Related] Page: [Next] [New Search]