These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
181 related items for PubMed ID: 36170144
1. Ear pinnae in a neotropical katydid (Orthoptera: Tettigoniidae) function as ultrasound guides for bat detection. Pulver CA, Celiker E, Woodrow C, Geipel I, Soulsbury CD, Cullen DA, Rogers SM, Veitch D, Montealegre-Z F. Elife; 2022 Sep 28; 11():. PubMed ID: 36170144 [Abstract] [Full Text] [Related]
2. An Eocene insect could hear conspecific ultrasounds and bat echolocation. Woodrow C, Celiker E, Montealegre-Z F. Curr Biol; 2023 Dec 18; 33(24):5304-5315.e3. PubMed ID: 37963458 [Abstract] [Full Text] [Related]
3. On the tympanic membrane impedance of the katydid Copiphora gorgonensis (Insecta: Orthoptera: Tettigoniidae). Celiker E, Jonsson T, Montealegre-Z F. J Acoust Soc Am; 2020 Oct 18; 148(4):1952. PubMed ID: 33138497 [Abstract] [Full Text] [Related]
4. Auditory-based defence against gleaning bats in neotropical katydids (Orthoptera: Tettigoniidae). ter Hofstede HM, Kalko EK, Fullard JH. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 May 18; 196(5):349-58. PubMed ID: 20237786 [Abstract] [Full Text] [Related]
5. Revisiting adaptations of neotropical katydids (Orthoptera: Tettigoniidae) to gleaning bat predation. Ter Hofstede H, Voigt-Heucke S, Lang A, Römer H, Page R, Faure P, Dechmann D. Neotrop Biodivers; 2017 Jan 01; 3(1):41-49. PubMed ID: 28261664 [Abstract] [Full Text] [Related]
6. Wing mechanics and acoustic communication of a new genus of sylvan katydid (Orthoptera: Tettigoniidae: Pseudophyllinae) from the Central Cordillera cloud forest of Colombia. Holmes LB, Woodrow C, Sarria-S FA, Celiker E, Montealegre-Z F. PeerJ; 2024 Jan 01; 12():e17501. PubMed ID: 38952987 [Abstract] [Full Text] [Related]
7. Sheep in wolves' clothing: prey rely on proactive defences when predator and non-predator cues are similar. Symes LB, Martinson SJ, Kernan CE, Ter Hofstede HM. Proc Biol Sci; 2020 Aug 26; 287(1933):20201212. PubMed ID: 32842929 [Abstract] [Full Text] [Related]
8. Sensory-based niche partitioning in a multiple predator - multiple prey community. Falk JJ, ter Hofstede HM, Jones PL, Dixon MM, Faure PA, Kalko EK, Page RA. Proc Biol Sci; 2015 Jun 07; 282(1808):20150520. PubMed ID: 25994677 [Abstract] [Full Text] [Related]
9. Neural representation of bat predation risk and evasive flight in moths: A modelling approach. Goerlitz HR, Hofstede HMT, Holderied MW. J Theor Biol; 2020 Feb 07; 486():110082. PubMed ID: 31734242 [Abstract] [Full Text] [Related]
10. Reliable detection of predator cues in afferent spike trains of a katydid under high background noise levels. Hartbauer M, Radspieler G, Römer H. J Exp Biol; 2010 Sep 07; 213(Pt 17):3036-46. PubMed ID: 20709932 [Abstract] [Full Text] [Related]
11. Hearing diversity in moths confronting a neotropical bat assemblage. Cobo-Cuan A, Kössl M, Mora EC. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Sep 07; 203(9):707-715. PubMed ID: 28421281 [Abstract] [Full Text] [Related]
12. What determines the tuning of hearing organs and the frequency of calls? A comparative study in the katydid genus Neoconocephalus (Orthoptera, Tettigoniidae). Schul J, Patterson AC. J Exp Biol; 2003 Jan 07; 206(Pt 1):141-52. PubMed ID: 12456704 [Abstract] [Full Text] [Related]
13. Ultrasound avoidance by flying antlions (Myrmeleontidae). Holderied MW, Thomas LA, Korine C. J Exp Biol; 2018 Oct 29; 221(Pt 21):. PubMed ID: 30224368 [Abstract] [Full Text] [Related]
14. Acoustic camouflage increases with body size and changes with bat echolocation frequency range in a community of nocturnally active Lepidoptera. Simon R, Dreissen A, Leroy H, Berg MP, Halfwerk W. J Anim Ecol; 2023 Dec 29; 92(12):2363-2372. PubMed ID: 37882060 [Abstract] [Full Text] [Related]
15. Decision making in the face of a deadly predator: high-amplitude behavioural thresholds can be adaptive for rainforest crickets under high background noise levels. Römer H, Holderied M. Philos Trans R Soc Lond B Biol Sci; 2020 Jul 06; 375(1802):20190471. PubMed ID: 32420855 [Abstract] [Full Text] [Related]
16. Adaptations for Substrate Gleaning in Bats: The Pallid Bat as a Case Study. Razak KA. Brain Behav Evol; 2018 Jul 06; 91(2):97-108. PubMed ID: 29874652 [Abstract] [Full Text] [Related]
17. The neuroethology of song cessation in response to gleaning bat calls in two species of katydids, Neoconocephalus ensiger and Amblycorypha oblongifolia. ter Hofstede HM, Fullard JH. J Exp Biol; 2008 Aug 06; 211(Pt 15):2431-41. PubMed ID: 18626077 [Abstract] [Full Text] [Related]
18. The cercal organ may provide singing tettigoniids a backup sensory system for the detection of eavesdropping bats. Hartbauer M, Ofner E, Grossauer V, Siemers BM. PLoS One; 2010 Sep 13; 5(9):e12698. PubMed ID: 20856887 [Abstract] [Full Text] [Related]
19. Evolutionary escalation: the bat-moth arms race. Ter Hofstede HM, Ratcliffe JM. J Exp Biol; 2016 Jun 01; 219(Pt 11):1589-602. PubMed ID: 27252453 [Abstract] [Full Text] [Related]
20. Keeping up with bats: dynamic auditory tuning in a moth. Windmill JF, Jackson JC, Tuck EJ, Robert D. Curr Biol; 2006 Dec 19; 16(24):2418-23. PubMed ID: 17174915 [Abstract] [Full Text] [Related] Page: [Next] [New Search]