These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


206 related items for PubMed ID: 36176104

  • 21. The ankle dorsiflexion kinetics demand to increase swing phase foot-ground clearance: implications for assistive device design and energy demands.
    Bajelan S, Sparrow WAT, Begg R.
    J Neuroeng Rehabil; 2024 Jun 21; 21(1):105. PubMed ID: 38907255
    [Abstract] [Full Text] [Related]

  • 22. Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: neuromuscular electrical stimulation for improved knee extension.
    Shideler BL, Bulea TC, Chen J, Stanley CJ, Gravunder AJ, Damiano DL.
    J Neuroeng Rehabil; 2020 Sep 03; 17(1):121. PubMed ID: 32883297
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control.
    Koller JR, Remy CD, Ferris DP.
    J Neuroeng Rehabil; 2018 May 25; 15(1):42. PubMed ID: 29801451
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude.
    Kao PC, Lewis CL, Ferris DP.
    J Neuroeng Rehabil; 2010 Jul 26; 7():33. PubMed ID: 20659331
    [Abstract] [Full Text] [Related]

  • 37. An Untethered Ankle Exoskeleton Improves Walking Economy in a Pilot Study of Individuals With Cerebral Palsy.
    Lerner ZF, Gasparri GM, Bair MO, Lawson JL, Luque J, Harvey TA, Lerner AT.
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct 26; 26(10):1985-1993. PubMed ID: 30235140
    [Abstract] [Full Text] [Related]

  • 38. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study.
    Takahashi KZ, Lewek MD, Sawicki GS.
    J Neuroeng Rehabil; 2015 Feb 25; 12():23. PubMed ID: 25889283
    [Abstract] [Full Text] [Related]

  • 39. Comparing the effectiveness of robotic plantarflexion resistance and biofeedback between overground and treadmill walking.
    Bowersock CD, Lerner ZF.
    J Biomech; 2024 Oct 25; 175():112282. PubMed ID: 39182263
    [Abstract] [Full Text] [Related]

  • 40. Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
    Bianco NA, Franks PW, Hicks JL, Delp SL.
    PLoS One; 2022 Oct 25; 17(1):e0261318. PubMed ID: 34986191
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.