These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
110 related items for PubMed ID: 36200537
1. Nitrogen repression of deoxynivalenol biosynthesis is mediated by Mep2 ammonium permease in Fusarium graminearum. Hu Y, Hou R, Wang Z, Zhang W, Xu JR. Environ Microbiol; 2022 Nov; 24(11):5392-5407. PubMed ID: 36200537 [Abstract] [Full Text] [Related]
2. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. Hou R, Jiang C, Zheng Q, Wang C, Xu JR. Mol Plant Pathol; 2015 Dec; 16(9):987-99. PubMed ID: 25781642 [Abstract] [Full Text] [Related]
3. Impact of ammonium permeases mepA, mepB, and mepC on nitrogen-regulated secondary metabolism in Fusarium fujikuroi. Teichert S, Rutherford JC, Wottawa M, Heitman J, Tudzynski B. Eukaryot Cell; 2008 Feb; 7(2):187-201. PubMed ID: 18083831 [Abstract] [Full Text] [Related]
4. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. Yin T, Zhang Q, Wang J, Liu H, Wang C, Xu JR, Jiang C. Mol Plant Pathol; 2018 Mar; 19(3):552-563. PubMed ID: 28142217 [Abstract] [Full Text] [Related]
5. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Lorenz MC, Heitman J. EMBO J; 1998 Aug 10; 17(5):1236-47. PubMed ID: 9482721 [Abstract] [Full Text] [Related]
6. Two 14-3-3 proteins contribute to nitrogen sensing through the TOR and glutamine synthetase-dependent pathways in Fusarium graminearum. Brauer EK, Manes N, Bonner C, Subramaniam R. Fungal Genet Biol; 2020 Jan 10; 134():103277. PubMed ID: 31605748 [Abstract] [Full Text] [Related]
7. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. Hu S, Zhou X, Gu X, Cao S, Wang C, Xu JR. Mol Plant Microbe Interact; 2014 Jun 10; 27(6):557-66. PubMed ID: 24450772 [Abstract] [Full Text] [Related]
8. Control of ammonium permease expression and filamentous growth by the GATA transcription factors GLN3 and GAT1 in Candida albicans. Dabas N, Morschhäuser J. Eukaryot Cell; 2007 May 10; 6(5):875-88. PubMed ID: 17369441 [Abstract] [Full Text] [Related]
9. Role of the Npr1 kinase in ammonium transport and signaling by the ammonium permease Mep2 in Candida albicans. Neuhäuser B, Dunkel N, Satheesh SV, Morschhäuser J. Eukaryot Cell; 2011 Mar 10; 10(3):332-42. PubMed ID: 21278231 [Abstract] [Full Text] [Related]
10. The Dynamin-Like GTPase FgSey1 Plays a Critical Role in Fungal Development and Virulence in Fusarium graminearum. Chong X, Wang C, Wang Y, Wang Y, Zhang L, Liang Y, Chen L, Zou S, Dong H. Appl Environ Microbiol; 2020 May 19; 86(11):. PubMed ID: 32220839 [Abstract] [Full Text] [Related]
11. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Jiang C, Zhang C, Wu C, Sun P, Hou R, Liu H, Wang C, Xu JR. Environ Microbiol; 2016 Nov 19; 18(11):3689-3701. PubMed ID: 26940955 [Abstract] [Full Text] [Related]
12. The Golgin Protein RUD3 Regulates Fusarium graminearum Growth and Virulence. Wang C, Wang Y, Zhang L, Yin Z, Liang Y, Chen L, Zou S, Dong H. Appl Environ Microbiol; 2021 Feb 26; 87(6):. PubMed ID: 33452023 [Abstract] [Full Text] [Related]
13. The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production. Giese H, Sondergaard TE, Sørensen JL. Fungal Biol; 2013 Feb 26; 117(11-12):814-21. PubMed ID: 24295920 [Abstract] [Full Text] [Related]
14. In vivo N-glycosylation of the mep2 high-affinity ammonium transporter of Saccharomyces cerevisiae reveals an extracytosolic N-terminus. Marini AM, André B. Mol Microbiol; 2000 Nov 26; 38(3):552-64. PubMed ID: 11069679 [Abstract] [Full Text] [Related]
15. The PKR regulatory subunit of protein kinase A (PKA) is involved in the regulation of growth, sexual and asexual development, and pathogenesis in Fusarium graminearum. Li C, Zhang Y, Wang H, Chen L, Zhang J, Sun M, Xu JR, Wang C. Mol Plant Pathol; 2018 Apr 26; 19(4):909-921. PubMed ID: 28665481 [Abstract] [Full Text] [Related]
16. The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum. Yang P, Chen Y, Wu H, Fang W, Liang Q, Zheng Y, Olsson S, Zhang D, Zhou J, Wang Z, Zheng W. Curr Genet; 2018 Feb 26; 64(1):285-301. PubMed ID: 28918485 [Abstract] [Full Text] [Related]
17. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Van Thuat N, Schäfer W, Bormann J. Mol Plant Microbe Interact; 2012 Sep 26; 25(9):1142-56. PubMed ID: 22591226 [Abstract] [Full Text] [Related]
18. Ammonium permease-based sensing mechanism for rapid ammonium activation of the protein kinase A pathway in yeast. Van Nuland A, Vandormael P, Donaton M, Alenquer M, Lourenço A, Quintino E, Versele M, Thevelein JM. Mol Microbiol; 2006 Mar 26; 59(5):1485-505. PubMed ID: 16468990 [Abstract] [Full Text] [Related]
19. The transcription factor FgCrz1A is essential for fungal development, virulence, deoxynivalenol biosynthesis and stress responses in Fusarium graminearum. Chen L, Tong Q, Zhang C, Ding K. Curr Genet; 2019 Feb 26; 65(1):153-166. PubMed ID: 29947970 [Abstract] [Full Text] [Related]
20. Genome-Wide Characterization of PX Domain-Containing Proteins Involved in Membrane Trafficking-Dependent Growth and Pathogenicity of Fusarium graminearum. Lou Y, Zhang J, Wang G, Fang W, Wang S, Abubakar YS, Zhou J, Wang Z, Zheng W. mBio; 2021 Dec 21; 12(6):e0232421. PubMed ID: 34933449 [Abstract] [Full Text] [Related] Page: [Next] [New Search]