These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 36202772
1. Gatekeeper Residue Replacement in a Phosphite Transporter Enhances Mutational Robustness of the Biocontainment Strategy. Hirota R, Katsuura ZI, Momokawa N, Murakami H, Watanabe S, Ishida T, Ikeda T, Funabashi H, Kuroda A. ACS Synth Biol; 2022 Oct 21; 11(10):3397-3404. PubMed ID: 36202772 [Abstract] [Full Text] [Related]
2. Phosphite binding by the HtxB periplasmic binding protein depends on the protonation state of the ligand. Adams NBP, Robertson AJ, Hunter CN, Hitchcock A, Bisson C. Sci Rep; 2019 Jul 15; 9(1):10231. PubMed ID: 31308436 [Abstract] [Full Text] [Related]
3. A Novel Biocontainment Strategy Makes Bacterial Growth and Survival Dependent on Phosphite. Hirota R, Abe K, Katsuura ZI, Noguchi R, Moribe S, Motomura K, Ishida T, Alexandrov M, Funabashi H, Ikeda T, Kuroda A. Sci Rep; 2017 Mar 20; 7():44748. PubMed ID: 28317852 [Abstract] [Full Text] [Related]
4. The molecular basis of phosphite and hypophosphite recognition by ABC-transporters. Bisson C, Adams NBP, Stevenson B, Brindley AA, Polyviou D, Bibby TS, Baker PJ, Hunter CN, Hitchcock A. Nat Commun; 2017 Nov 23; 8(1):1746. PubMed ID: 29170493 [Abstract] [Full Text] [Related]
5. Phosphite synthetic auxotrophy as an effective biocontainment strategy for the industrial chassis Pseudomonas putida. Asin-Garcia E, Batianis C, Li Y, Fawcett JD, de Jong I, Dos Santos VAPM. Microb Cell Fact; 2022 Aug 08; 21(1):156. PubMed ID: 35934698 [Abstract] [Full Text] [Related]
6. Phosphite disrupts the acclimation of Saccharomyces cerevisiae to phosphate starvation. McDonald AE, Niere JO, Plaxton WC. Can J Microbiol; 2001 Nov 08; 47(11):969-78. PubMed ID: 11766057 [Abstract] [Full Text] [Related]
7. Synthetic Phosphorus Metabolic Pathway for Biosafety and Contamination Management of Cyanobacterial Cultivation. Motomura K, Sano K, Watanabe S, Kanbara A, Gamal Nasser AH, Ikeda T, Ishida T, Funabashi H, Kuroda A, Hirota R. ACS Synth Biol; 2018 Sep 21; 7(9):2189-2198. PubMed ID: 30203964 [Abstract] [Full Text] [Related]
8. Marine picocyanobacterial PhnD1 shows specificity for various phosphorus sources but likely represents a constitutive inorganic phosphate transporter. Shah BS, Ford BA, Varkey D, Mikolajek H, Orr C, Mykhaylyk V, Owens RJ, Paulsen IT. ISME J; 2023 Jul 21; 17(7):1040-1051. PubMed ID: 37087502 [Abstract] [Full Text] [Related]
9. Genetic diversity and horizontal transfer of genes involved in oxidation of reduced phosphorus compounds by Alcaligenes faecalis WM2072. Wilson MM, Metcalf WW. Appl Environ Microbiol; 2005 Jan 21; 71(1):290-6. PubMed ID: 15640200 [Abstract] [Full Text] [Related]
10. Assessment of horizontal gene transfer-mediated destabilization of Synechococcus elongatus PCC 7942 biocontainment system. Murakami H, Sano K, Motomura K, Kuroda A, Hirota R. J Biosci Bioeng; 2023 Mar 21; 135(3):190-195. PubMed ID: 36653270 [Abstract] [Full Text] [Related]
11. Microbial Phosphite Oxidation and Its Potential Role in the Global Phosphorus and Carbon Cycles. Figueroa IA, Coates JD. Adv Appl Microbiol; 2017 Mar 21; 98():93-117. PubMed ID: 28189156 [Abstract] [Full Text] [Related]
12. Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88. Metcalf WW, Wolfe RS. J Bacteriol; 1998 Nov 21; 180(21):5547-58. PubMed ID: 9791102 [Abstract] [Full Text] [Related]
13. Anaerobic dissimilatory phosphite oxidation, an extremely efficient concept of microbial electron economy. Mao Z, Müller N, Borusak S, Schleheck D, Schink B. Environ Microbiol; 2023 Nov 21; 25(11):2068-2074. PubMed ID: 37525971 [Abstract] [Full Text] [Related]
14. Evidence from Mutational Analysis for a Single Transmembrane Substrate Binding Site in the Histidine ATP-Binding Cassette Transporter of Salmonella enterica Serovar Typhimurium. Heuveling J, Landmesser H, Schneider E. J Bacteriol; 2019 Jan 15; 201(2):. PubMed ID: 30348830 [Abstract] [Full Text] [Related]
15. A fluorometric assay for high-throughput phosphite quantitation in biological and environmental matrices. Bailey CA, Greene BL. Analyst; 2023 Jul 26; 148(15):3650-3658. PubMed ID: 37424451 [Abstract] [Full Text] [Related]
16. Phosphite utilization by the globally important marine diazotroph Trichodesmium. Polyviou D, Hitchcock A, Baylay AJ, Moore CM, Bibby TS. Environ Microbiol Rep; 2015 Dec 26; 7(6):824-30. PubMed ID: 26081517 [Abstract] [Full Text] [Related]
17. Expression of bacterial phosphite dehydrogenase confers phosphite availability in a unicellular red alga Cyanidioschyzon merolae. Kobayashi I, Imamura S, Hirota R, Kuroda A, Tanaka K. J Gen Appl Microbiol; 2024 Mar 07; 69(5):287-291. PubMed ID: 37587047 [Abstract] [Full Text] [Related]
18. Phosphate and phosphite have a differential impact on the proteome and phosphoproteome of Arabidopsis suspension cell cultures. Mehta D, Ghahremani M, Pérez-Fernández M, Tan M, Schläpfer P, Plaxton WC, Uhrig RG. Plant J; 2021 Feb 07; 105(4):924-941. PubMed ID: 33184936 [Abstract] [Full Text] [Related]
19. AMP-dependent phosphite dehydrogenase, a phosphorylating enzyme in dissimilatory phosphite oxidation. Mao Z, Fleming JR, Mayans O, Frey J, Schleheck D, Schink B, Müller N. Proc Natl Acad Sci U S A; 2023 Nov 07; 120(45):e2309743120. PubMed ID: 37922328 [Abstract] [Full Text] [Related]