These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


145 related items for PubMed ID: 3620469

  • 1. Binding of cytochalasin B to trypsin and thermolysin fragments of the human erythrocyte hexose transporter.
    Karim AR, Rees WD, Holman GD.
    Biochim Biophys Acta; 1987 Sep 03; 902(3):402-5. PubMed ID: 3620469
    [Abstract] [Full Text] [Related]

  • 2. Photolabelling of the hexose transporter at external and internal sites: fragmentation patterns and evidence for a conformational change.
    Holman GD, Rees WD.
    Biochim Biophys Acta; 1987 Mar 12; 897(3):395-405. PubMed ID: 3545294
    [Abstract] [Full Text] [Related]

  • 3. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE, Cloherty EK, Zottola RJ, Carruthers A.
    Biochemistry; 1995 Aug 01; 34(30):9762-73. PubMed ID: 7626647
    [Abstract] [Full Text] [Related]

  • 4. Proteolytic cleavages of cytochalasin B binding components of band 4.5 proteins of the human red blood cell membrane.
    Deziel MR, Rothstein A.
    Biochim Biophys Acta; 1984 Sep 19; 776(1):10-20. PubMed ID: 6541055
    [Abstract] [Full Text] [Related]

  • 5. Cytochalasin B interferes with conformational changes of the human erythrocyte glucose transporter induced by internal and external sugar binding.
    King AP, Tai PK, Carter-Su C.
    Biochemistry; 1991 Dec 10; 30(49):11546-53. PubMed ID: 1747373
    [Abstract] [Full Text] [Related]

  • 6. Proteolytic cleavage of [3H]nitrobenzylthioinosine-labelled nucleoside transporter in human erythrocytes.
    Janmohamed NS, Young JD, Jarvis SM.
    Biochem J; 1985 Sep 15; 230(3):777-84. PubMed ID: 4062878
    [Abstract] [Full Text] [Related]

  • 7. Ligand-induced conformational changes modify proteolytic cleavage of the adipocyte insulin-sensitive glucose transporter.
    Yano Y, May JM.
    Biochem J; 1993 Oct 01; 295 ( Pt 1)(Pt 1):183-8. PubMed ID: 8216214
    [Abstract] [Full Text] [Related]

  • 8. Chemical identity of the glucose transporter with the [3H]cytochalasin B-photolabelled component of human erythrocyte membranes. Equal sensitivity to trypsin and endoglycosidase F.
    Klip A, Deziel M, Walkert D.
    Biochem Biophys Res Commun; 1984 Jul 18; 122(1):218-24. PubMed ID: 6430291
    [Abstract] [Full Text] [Related]

  • 9. Photolabeling of erythrocyte and adipocyte hexose transporters using a benzophenone derivative of bis(D-mannose).
    Holman GD, Karim AR, Karim B.
    Biochim Biophys Acta; 1988 Dec 08; 946(1):75-84. PubMed ID: 3207733
    [Abstract] [Full Text] [Related]

  • 10. Identification and characterization of the glucose-transport protein of the bovine blood/brain barrier.
    Kasanicki MA, Cairns MT, Davies A, Gardiner RM, Baldwin SA.
    Biochem J; 1987 Oct 01; 247(1):101-8. PubMed ID: 3120700
    [Abstract] [Full Text] [Related]

  • 11. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites.
    Cloherty EK, Levine KB, Carruthers A.
    Biochemistry; 2001 Dec 25; 40(51):15549-61. PubMed ID: 11747430
    [Abstract] [Full Text] [Related]

  • 12. Photoaffinity labeling of the K562 cell membrane D-glucose transporter with cytochalasin B.
    Uezato T.
    Biochem Int; 1986 Feb 25; 12(2):199-206. PubMed ID: 3457566
    [Abstract] [Full Text] [Related]

  • 13. Orientation of the glucose transporter in the human erythrocyte membrane. Investigation by in situ proteolytic dissection.
    Shanahan MF, D'Artel-Ellis J.
    J Biol Chem; 1984 Nov 25; 259(22):13878-84. PubMed ID: 6150039
    [Abstract] [Full Text] [Related]

  • 14. Investigation of the structure and function of the human erythrocyte glucose transporter by proteolytic dissection.
    Cairns MT, Alvarez J, Panico M, Gibbs AF, Morris HR, Chapman D, Baldwin SA.
    Biochim Biophys Acta; 1987 Dec 11; 905(2):295-310. PubMed ID: 3689782
    [Abstract] [Full Text] [Related]

  • 15. Labelling of the human erythrocyte glucose transporter with 3H-labelled cytochalasin B occurs via protein photoactivation.
    Deziel M, Pegg W, Mack E, Rothstein A, Klip A.
    Biochim Biophys Acta; 1984 May 30; 772(3):403-6. PubMed ID: 6539126
    [Abstract] [Full Text] [Related]

  • 16. Chemical and genetic comparison of the glucose and nucleoside transporters.
    Klip A, Walker D, Cohen A, Leung CY.
    Biochem Cell Biol; 1986 Nov 30; 64(11):1170-80. PubMed ID: 3828109
    [Abstract] [Full Text] [Related]

  • 17. Facilitated glucose transporter of human erythrocyte: proteolytic mapping of the [3H]cytochalasin B photoaffinity-labeled transporter polypeptide.
    Ishii T, Tillotson LG, Isselbacher KJ.
    Biochim Biophys Acta; 1985 Nov 08; 832(1):14-21. PubMed ID: 3902090
    [Abstract] [Full Text] [Related]

  • 18. Glycation of the human erythrocyte glucose transporter in vitro and its functional consequences.
    Bilan PJ, Klip A.
    Biochem J; 1990 Jun 15; 268(3):661-7. PubMed ID: 2363703
    [Abstract] [Full Text] [Related]

  • 19. Tryptic digestion of the human erythrocyte glucose transporter: effects on ligand binding and tryptophan fluorescence.
    May JM, Qu ZC, Beechem JM.
    Biochemistry; 1993 Sep 21; 32(37):9524-31. PubMed ID: 8373759
    [Abstract] [Full Text] [Related]

  • 20. Analysis of hexose transport in untransformed and sarcoma virus-transformed mouse 3T3 cells by photoaffinity binding of cytochalasin B.
    Kitagawa K, Nishino H, Iwashima A.
    Biochim Biophys Acta; 1985 Nov 21; 821(1):63-6. PubMed ID: 2998464
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.