These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Identification of the phylotypes involved in cis-dichloroethene and 1,4-dioxane biodegradation in soil microcosms. Dang H, Cupples AM. Sci Total Environ; 2021 Nov 10; 794():148690. PubMed ID: 34198077 [Abstract] [Full Text] [Related]
6. Microbial community characterization and functional gene quantification in RDX-degrading microcosms derived from sediment and groundwater at two naval sites. Wilson FP, Cupples AM. Appl Microbiol Biotechnol; 2016 Aug 10; 100(16):7297-309. PubMed ID: 27118012 [Abstract] [Full Text] [Related]
7. Long-term aerobic cometabolism of a chlorinated solvent mixture by vinyl chloride-, methane- and propane-utilizing biomasses. Frascari D, Pinelli D, Nocentini M, Zannoni A, Fedi S, Baleani E, Zannoni D, Farneti A, Battistelli A. J Hazard Mater; 2006 Nov 02; 138(1):29-39. PubMed ID: 16879912 [Abstract] [Full Text] [Related]
8. Impact of yeast extract and basal salts medium on 1,4-dioxane biodegradation rates and the microorganisms involved in carbon uptake from 1,4-dioxane. Li Z, Cupples AM. Environ Pollut; 2024 Dec 01; 362():125014. PubMed ID: 39322104 [Abstract] [Full Text] [Related]
9. Predicted functional genes for the biodegradation of xenobiotics in groundwater and sediment at two contaminated naval sites. Vera A, Wilson FP, Cupples AM. Appl Microbiol Biotechnol; 2022 Jan 01; 106(2):835-853. PubMed ID: 35015144 [Abstract] [Full Text] [Related]
10. Predicting the occurrence of monooxygenases and their associated phylotypes in soil microcosms. Cupples AM, Thelusmond JR. J Microbiol Methods; 2022 Feb 01; 193():106401. PubMed ID: 34973287 [Abstract] [Full Text] [Related]
11. 1,4-Dioxane-degrading consortia can be enriched from uncontaminated soils: prevalence of Mycobacterium and soluble di-iron monooxygenase genes. He Y, Mathieu J, da Silva MLB, Li M, Alvarez PJJ. Microb Biotechnol; 2018 Jan 01; 11(1):189-198. PubMed ID: 28984418 [Abstract] [Full Text] [Related]
12. An investigation of soil and groundwater metagenomes for genes encoding soluble and particulate methane monooxygenase, toluene-4-monoxygenase, propane monooxygenase and phenol hydroxylase. Cupples AM, Dang H, Foss K, Bernstein A, Thelusmond JR. Arch Microbiol; 2024 Jul 29; 206(8):363. PubMed ID: 39073473 [Abstract] [Full Text] [Related]
13. Microbial Community Analysis Provides Insights into the Effects of Tetrahydrofuran on 1,4-Dioxane Biodegradation. Xiong Y, Mason OU, Lowe A, Zhou C, Chen G, Tang Y. Appl Environ Microbiol; 2019 Jun 01; 85(11):. PubMed ID: 30926731 [Abstract] [Full Text] [Related]
14. Effect of biostimulation and bioaugmentation on biodegradation of high concentrations of 1,4-dioxane. Ramos-García ÁA, Walecka-Hutchison C, Freedman DL. Biodegradation; 2022 Apr 01; 33(2):157-168. PubMed ID: 35102492 [Abstract] [Full Text] [Related]
15. Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates. Patterson BM, Aravena R, Davis GB, Furness AJ, Bastow TP, Bouchard D. J Contam Hydrol; 2013 Oct 01; 153():69-77. PubMed ID: 23999077 [Abstract] [Full Text] [Related]
16. Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates. Hatzinger PB, Banerjee R, Rezes R, Streger SH, McClay K, Schaefer CE. Biodegradation; 2017 Dec 01; 28(5-6):453-468. PubMed ID: 29022194 [Abstract] [Full Text] [Related]
17. Profiling microbial community structures and functions in bioremediation strategies for treating 1,4-dioxane-contaminated groundwater. Miao Y, Heintz MB, Bell CH, Johnson NW, Polasko AL, Favero D, Mahendra S. J Hazard Mater; 2021 Apr 15; 408():124457. PubMed ID: 33189472 [Abstract] [Full Text] [Related]