These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil. Yu XH, Cahoon RE, Horn PJ, Shi H, Prakash RR, Cai Y, Hearney M, Chapman KD, Cahoon EB, Schwender J, Shanklin J. Plant Biotechnol J; 2018 Apr; 16(4):926-938. PubMed ID: 28929610 [Abstract] [Full Text] [Related]
4. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa. Snapp AR, Kang J, Qi X, Lu C. Planta; 2014 Sep; 240(3):599-610. PubMed ID: 25023632 [Abstract] [Full Text] [Related]
7. [Cloning and functional characterization of a lysophosphatidic acid acyltransferase gene from Perilla frutescens]. Zhou Y, Huang X, Hao Y, Cai G, Shi X, Li R, Wang J. Sheng Wu Gong Cheng Xue Bao; 2022 Aug 25; 38(8):3014-3028. PubMed ID: 36002428 [Abstract] [Full Text] [Related]
9. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa. Ozseyhan ME, Kang J, Mu X, Lu C. Plant Physiol Biochem; 2018 Feb 25; 123():1-7. PubMed ID: 29216494 [Abstract] [Full Text] [Related]
10. In Silico Analysis of Fatty Acid Desaturases Structures in Camelina sativa, and Functional Evaluation of Csafad7 and Csafad8 on Seed Oil Formation and Seed Morphology. Raboanatahiry N, Yin Y, Chen K, He J, Yu L, Li M. Int J Mol Sci; 2021 Oct 08; 22(19):. PubMed ID: 34639198 [Abstract] [Full Text] [Related]
11. Overexpression of the Phosphatidylcholine:DiacylglycerolCholinephosphotransferase (PDCT) gene increases carbon flux toward triacylglycerol (TAG) synthesis in Camelinasativa seeds. Abdullah HM, Pang N, Chilcoat B, Shachar-Hill Y, Schnell DJ, Dhankher OP. Plant Physiol Biochem; 2024 Mar 08; 208():108470. PubMed ID: 38422576 [Abstract] [Full Text] [Related]
12. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa. Huai D, Zhang Y, Zhang C, Cahoon EB, Zhou Y. PLoS One; 2015 Mar 08; 10(6):e0131755. PubMed ID: 26121034 [Abstract] [Full Text] [Related]
13. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Nguyen HT, Park H, Koster KL, Cahoon RE, Nguyen HT, Shanklin J, Clemente TE, Cahoon EB. Plant Biotechnol J; 2015 Jan 08; 13(1):38-50. PubMed ID: 25065607 [Abstract] [Full Text] [Related]
14. The natural genetic variation of the fatty-acyl composition of seed oils in different ecotypes of Arabidopsis thaliana. Millar AA, Kunst L. Phytochemistry; 1999 Nov 08; 52(6):1029-33. PubMed ID: 10643668 [Abstract] [Full Text] [Related]
15. Functional Characterization of the Effects of CsDGAT1 and CsDGAT2 on Fatty Acid Composition in Camelina sativa. Lee KR, Yeo Y, Lee J, Kim S, Im C, Kim I, Lee J, Lee SK, Suh MC, Kim HU. Int J Mol Sci; 2024 Jun 25; 25(13):. PubMed ID: 39000052 [Abstract] [Full Text] [Related]
16. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Zou J, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC. Plant Cell; 1997 Jun 25; 9(6):909-23. PubMed ID: 9212466 [Abstract] [Full Text] [Related]
17. Expression of a Lychee PHOSPHATIDYLCHOLINE:DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE with an Escherichia coli CYCLOPROPANE SYNTHASE Enhances Cyclopropane Fatty Acid Accumulation in Camelina Seeds. Yu XH, Cai Y, Chai J, Schwender J, Shanklin J. Plant Physiol; 2019 Jul 25; 180(3):1351-1361. PubMed ID: 31123096 [Abstract] [Full Text] [Related]
18. Coexpressing Escherichia coli cyclopropane synthase with Sterculia foetida Lysophosphatidic acid acyltransferase enhances cyclopropane fatty acid accumulation. Yu XH, Prakash RR, Sweet M, Shanklin J. Plant Physiol; 2014 Jan 25; 164(1):455-65. PubMed ID: 24204024 [Abstract] [Full Text] [Related]
19. Structurally divergent lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from Cuphea seeds. Kim HJ, Silva JE, Iskandarov U, Andersson M, Cahoon RE, Mockaitis K, Cahoon EB. Plant J; 2015 Dec 25; 84(5):1021-33. PubMed ID: 26505880 [Abstract] [Full Text] [Related]
20. Ultra-high α-linolenic acid accumulating developmental defective embryo was rescued by lysophosphatidic acid acyltransferase 2. Yin Y, Guo Z, Chen K, Tian T, Tan J, Chen X, Chen J, Yang B, Tang S, Peng K, Liu S, Liang Y, Zhang K, Yu L, Li M. Plant J; 2020 Sep 25; 103(6):2151-2167. PubMed ID: 32573846 [Abstract] [Full Text] [Related] Page: [Next] [New Search]