These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


107 related items for PubMed ID: 3621032

  • 1. Modulation of spinal cord transmission by changes in extracellular K+ activity and extracellular volume.
    Syková E.
    Can J Physiol Pharmacol; 1987 May; 65(5):1058-66. PubMed ID: 3621032
    [Abstract] [Full Text] [Related]

  • 2. Role of endogenous opiates and extracellular K+ accumulation in the inhibition of frog spinal reflexes by electrical skin stimulation.
    Syková E, Kríz N, Hájek I.
    Physiol Bohemoslov; 1985 May; 34(6):548-61. PubMed ID: 3003770
    [Abstract] [Full Text] [Related]

  • 3. Changes in extracellular potassium accumulation produced by opioids and naloxone in frog spinal cord: relation to changes of Na-K pump activity.
    Syková E, Hájek I, Chvátal A, Kríz N, Diatchkova GI.
    Neurosci Lett; 1985 Sep 06; 59(3):285-90. PubMed ID: 2414693
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Extracellular potassium accumulation in the frog spinal cord induced by stimulation of the skin and ventrolateral columns.
    Czéh G, Kríz N, Syková E.
    J Physiol; 1981 Nov 06; 320():57-72. PubMed ID: 6976435
    [Abstract] [Full Text] [Related]

  • 6. Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord.
    Lothman EW, Somjen GG.
    J Physiol; 1975 Oct 06; 252(1):115-36. PubMed ID: 1202194
    [Abstract] [Full Text] [Related]

  • 7. Stimulation-evoked changes in extracellular pH, calcium and potassium activity in the frog spinal cord.
    Chvátal A, Jendelová P, Kríz N, Syková E.
    Physiol Bohemoslov; 1988 Oct 06; 37(3):203-12. PubMed ID: 2975788
    [Abstract] [Full Text] [Related]

  • 8. The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex.
    Cordingley GE, Somjen GG.
    Brain Res; 1978 Aug 04; 151(2):291-306. PubMed ID: 209864
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. K+ changes in the extracellular space of the spinal cord and their physiological role.
    Syková E.
    J Exp Biol; 1981 Dec 04; 95():93-109. PubMed ID: 6278046
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. The contribution of increases in extracellular potassium to primary afferent depolarization in the bullfrog spinal cord.
    Shefner SA, Levy RA.
    Brain Res; 1981 Feb 02; 205(2):321-35. PubMed ID: 6258714
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Extracellular K+, pH, and volume changes in spinal cord of adult rats and during postnatal development.
    Syková E, Jendelová P, Svoboda J, Chvátal A.
    Can J Physiol Pharmacol; 1992 Feb 02; 70 Suppl():S301-9. PubMed ID: 1295680
    [Abstract] [Full Text] [Related]

  • 19. Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study.
    Jeftinija S, Urban L.
    J Neurophysiol; 1994 Jan 02; 71(1):216-28. PubMed ID: 7908954
    [Abstract] [Full Text] [Related]

  • 20. Extracellular potassium, glial and neuronal potentials in the solitary complex of rat brainstem slices.
    Ballanyi K, Branchereau P, Champagnat J, Fortin G, Velluti J.
    Brain Res; 1993 Apr 02; 607(1-2):99-107. PubMed ID: 8097669
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.