These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


249 related items for PubMed ID: 36215748

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Fabrication of conductive gelatin methacrylate-polyaniline hydrogels.
    Wu Y, Chen YX, Yan J, Quinn D, Dong P, Sawyer SW, Soman P.
    Acta Biomater; 2016 Mar; 33():122-30. PubMed ID: 26821341
    [Abstract] [Full Text] [Related]

  • 6. An Antibacterial, Conductive Nanocomposite Hydrogel Coupled with Electrical Stimulation for Accelerated Wound Healing.
    Ren D, Zhang Y, Du B, Wang L, Gong M, Zhu W.
    Int J Nanomedicine; 2024 Mar; 19():4495-4513. PubMed ID: 38799696
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Electroconductive Gelatin Methacryloyl-PEDOT:PSS Composite Hydrogels: Design, Synthesis, and Properties.
    Spencer AR, Primbetova A, Koppes AN, Koppes RA, Fenniri H, Annabi N.
    ACS Biomater Sci Eng; 2018 May 14; 4(5):1558-1567. PubMed ID: 33445313
    [Abstract] [Full Text] [Related]

  • 12. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.
    Navaei A, Saini H, Christenson W, Sullivan RT, Ros R, Nikkhah M.
    Acta Biomater; 2016 Sep 01; 41():133-46. PubMed ID: 27212425
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Swelling Behaviors of 3D Printed Hydrogel and Hydrogel-Microcarrier Composite Scaffolds.
    Bittner SM, Pearce HA, Hogan KJ, Smoak MM, Guo JL, Melchiorri AJ, Scott DW, Mikos AG.
    Tissue Eng Part A; 2021 Jun 01; 27(11-12):665-678. PubMed ID: 33470161
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography.
    Elomaa L, Keshi E, Sauer IM, Weinhart M.
    Mater Sci Eng C Mater Biol Appl; 2020 Jul 01; 112():110958. PubMed ID: 32409091
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies.
    Ahadian S, Yamada S, Ramón-Azcón J, Estili M, Liang X, Nakajima K, Shiku H, Khademhosseini A, Matsue T.
    Acta Biomater; 2016 Feb 01; 31():134-143. PubMed ID: 26621696
    [Abstract] [Full Text] [Related]

  • 20. A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink.
    Choi KY, Ajiteru O, Hong H, Suh YJ, Sultan MT, Lee H, Lee JS, Lee YJ, Lee OJ, Kim SH, Park CH.
    Acta Biomater; 2023 Jul 01; 164():159-174. PubMed ID: 37121370
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.