These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


208 related items for PubMed ID: 3622766

  • 1. Respiratory control in the glucose perfused heart. A 31P NMR and NADH fluorescence study.
    Katz LA, Koretsky AP, Balaban RS.
    FEBS Lett; 1987 Sep 14; 221(2):270-6. PubMed ID: 3622766
    [Abstract] [Full Text] [Related]

  • 2. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW.
    Am J Physiol; 1995 Jan 14; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [Abstract] [Full Text] [Related]

  • 3. Changes in pyridine nucleotide levels alter oxygen consumption and extra-mitochondrial phosphates in isolated mitochondria: a 31P-NMR and NAD(P)H fluorescence study.
    Koretsky AP, Balaban RS.
    Biochim Biophys Acta; 1987 Oct 07; 893(3):398-408. PubMed ID: 2888484
    [Abstract] [Full Text] [Related]

  • 4. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.
    Williams JP, Headrick JP.
    Biochim Biophys Acta; 1996 Aug 07; 1276(1):71-9. PubMed ID: 8764892
    [Abstract] [Full Text] [Related]

  • 5. Use of gated perfusion to study early effects of anoxia on cardiac energy metabolism: a new 31P NMR method.
    Barbour RL, Sotak CH, Levy GC, Chan SH.
    Biochemistry; 1984 Dec 04; 23(25):6053-62. PubMed ID: 6525343
    [Abstract] [Full Text] [Related]

  • 6. Advantages of perfluorochemical perfusion in the isolated working rabbit heart preparation using 31P-NMR.
    Freeman D, Mayr H, Schmidt P, Roberts JD, Bing RJ.
    Biochim Biophys Acta; 1987 Mar 11; 927(3):350-8. PubMed ID: 3814627
    [Abstract] [Full Text] [Related]

  • 7. Cardiac contractile function, oxygen consumption rate and cytosolic phosphates during inhibition of electron flux by amytal--a 31P-NMR study.
    Kupriyanov VV, Lakomkin VL, Korchazhkina OV, Stepanov VA, Steinschneider AYa, Kapelko VI.
    Biochim Biophys Acta; 1991 Jul 05; 1058(3):386-99. PubMed ID: 2065062
    [Abstract] [Full Text] [Related]

  • 8. Hyperthyroidism results in increased glycolytic capacity in the rat heart. A 31P-NMR study.
    Seymour AM, Eldar H, Radda GK.
    Biochim Biophys Acta; 1990 Nov 12; 1055(2):107-16. PubMed ID: 2242380
    [Abstract] [Full Text] [Related]

  • 9. Respiratory control in heart muscle during fatty acid oxidation. Energy state or substrate-level regulation by Ca2+?
    Vuorinen KH, Ala-Rämi A, Yan Y, Ingman P, Hassinen IE.
    J Mol Cell Cardiol; 1995 Aug 12; 27(8):1581-91. PubMed ID: 8523421
    [Abstract] [Full Text] [Related]

  • 10. 31P NMR and enzymatic analysis of cytosolic phosphocreatine, ATP, Pi and intracellular pH in the isolated working perfused rat heart.
    Dobson GP, Veech RL, Passonneau JV, Kobayashi K, Inubushi T, Wehrli S, Nioka S, Chance B.
    NMR Biomed; 1992 Aug 12; 5(1):20-8. PubMed ID: 1550706
    [Abstract] [Full Text] [Related]

  • 11. 31P-NMR studies of respiratory regulation in the intact myocardium.
    From AH, Petein MA, Michurski SP, Zimmer SD, Uğurbil K.
    FEBS Lett; 1986 Oct 06; 206(2):257-61. PubMed ID: 3530811
    [Abstract] [Full Text] [Related]

  • 12. Control of mitochondrial respiration in the heart in vivo.
    Balaban RS, Heineman FW.
    Mol Cell Biochem; 1989 Sep 07; 89(2):191-7. PubMed ID: 2811864
    [Abstract] [Full Text] [Related]

  • 13. Respiratory control in isolated perfused rat heart. Role of the equilibrium relations between the mitochondrial electron carriers and the adenylate system.
    Hassinen IE, Hiltunen K.
    Biochim Biophys Acta; 1975 Dec 11; 408(3):319-30. PubMed ID: 172132
    [Abstract] [Full Text] [Related]

  • 14. Relation between work and phosphate metabolite in the in vivo paced mammalian heart.
    Balaban RS, Kantor HL, Katz LA, Briggs RW.
    Science; 1986 May 30; 232(4754):1121-3. PubMed ID: 3704638
    [Abstract] [Full Text] [Related]

  • 15. Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart. Studies using 31P n.m.r. and ruthenium red.
    Unitt JF, McCormack JG, Reid D, MacLachlan LK, England PJ.
    Biochem J; 1989 Aug 15; 262(1):293-301. PubMed ID: 2479373
    [Abstract] [Full Text] [Related]

  • 16. Activation of dehydrogenase activity and cardiac respiration: a 31P-NMR study.
    Katz LA, Koretsky AP, Balaban RS.
    Am J Physiol; 1988 Jul 15; 255(1 Pt 2):H185-8. PubMed ID: 2456023
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Relation between phosphate metabolites and oxygen consumption of heart in vivo.
    Katz LA, Swain JA, Portman MA, Balaban RS.
    Am J Physiol; 1989 Jan 15; 256(1 Pt 2):H265-74. PubMed ID: 2912189
    [Abstract] [Full Text] [Related]

  • 19. 31P NMR studies on the isolated perfused mandibular gland of the rat.
    Murakami M, Seo Y, Watari H, Ueda H, Hashimoto T, Tagawa K.
    Jpn J Physiol; 1987 Jan 15; 37(3):411-23. PubMed ID: 3682397
    [Abstract] [Full Text] [Related]

  • 20. Graded global ischaemia and reperfusion of the isolated perfused rat heart: characterisation by 31P NMR spectroscopy of the extent of energy metabolism damage.
    Lavanchy N, Martin J, Rossi A.
    Cardiovasc Res; 1984 Sep 15; 18(9):573-82. PubMed ID: 6467274
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.