These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Spectral sensitivity and retinal pigment movement in the crab Leptograpsus variegatus (fabricius). Stowe S. J Exp Biol; 1980 Aug; 87():73-98. PubMed ID: 7420021 [Abstract] [Full Text] [Related]
5. Dual controls for screening pigment movement in photoreceptors of the Limulus lateral eye: circadian efferent input and light. Kier CK, Chamberlain SC. Vis Neurosci; 1990 Mar; 4(3):237-55. PubMed ID: 2078504 [Abstract] [Full Text] [Related]
6. Ommatidial structure in relation to turnover of photoreceptor membrane in the locust. Williams DS. Cell Tissue Res; 1982 Mar; 225(3):595-617. PubMed ID: 7127410 [Abstract] [Full Text] [Related]
9. [Spectral sensitivity and visual pigments of the coastal crab Hemigrapsus sanguineus]. Shukoliukov SA, Zak PP, Kalamkarov GR, Kalishevich OO, Ostrovskiĭ MA. Biofizika; 1980 Mar; 25(3):510-4. PubMed ID: 7397264 [Abstract] [Full Text] [Related]
10. Rhabdom breakdown in the eye of Cirolana borealis (Crustacea) caused by exposure to daylight. Nilsson HL. Cell Tissue Res; 1982 Mar; 227(3):633-9. PubMed ID: 7151137 [Abstract] [Full Text] [Related]
11. Application of an invariant spectral form to the visual pigments of crustaceans: implications regarding the binding of the chromophore. Lipetz LE, Cronin TW. Vision Res; 1988 Mar; 28(10):1083-93. PubMed ID: 3257012 [Abstract] [Full Text] [Related]
12. The microtubular system of crayfish retinula cells and its changes in relation to screening-pigment migration. Frixione E. Cell Tissue Res; 1983 Mar; 232(2):335-48. PubMed ID: 6883446 [Abstract] [Full Text] [Related]
13. Light-induced and circadian changes in the compound eye of the haematophagous bug Triatoma infestans (Hemiptera: Reduviidae). Reisenman CE, Insausti TC, Lazzari CR. J Exp Biol; 2002 Jan; 205(Pt 2):201-10. PubMed ID: 11821486 [Abstract] [Full Text] [Related]
14. Functional anatomy of the fiddler crab compound eye (Uca vomeris: Ocypodidae, Brachyura, Decapoda). Alkaladi A, Zeil J. J Comp Neurol; 2014 Apr 15; 522(6):1264-83. PubMed ID: 24114990 [Abstract] [Full Text] [Related]
15. The retina of the phalangid, Opilio ravennae, with particular reference to arhabdomeric cells. Schliwa M. Cell Tissue Res; 1979 Apr 15; 204(3):473-95. PubMed ID: 527030 [Abstract] [Full Text] [Related]
16. Larval and adult eye of the western rock lobster (Panulirus longipes). Meyer-Rochow VB. Cell Tissue Res; 1975 Oct 27; 162(4):439-57. PubMed ID: 1182773 [Abstract] [Full Text] [Related]
17. Light adaptation mechanisms in the eye of the fiddler crab Afruca tangeri. Brodrick EA, Roberts NW, Sumner-Rooney L, Schlepütz CM, How MJ. J Comp Neurol; 2021 Feb 27; 529(3):616-634. PubMed ID: 32592497 [Abstract] [Full Text] [Related]
18. Compound Eye Fine Structure in Paralomis multispina Benedict, an Anomuran Half-Crab From 1200 m Depth (Crustacea; Decapoda; Anomura). Eguchi E, Dezawa M, Meyer-Rochow VB. Biol Bull; 1997 Apr 27; 192(2):300-308. PubMed ID: 28581872 [Abstract] [Full Text] [Related]
19. Fine structure of the compound eye of Porcellio scaber in light and dark adaption. Nemanic P. Tissue Cell; 1975 Apr 27; 7(3):453-68. PubMed ID: 170708 [Abstract] [Full Text] [Related]
20. Pigment migration and adaptation in the eye of the squid, Loligo pealei. Daw NW, Pearlman AL. J Gen Physiol; 1974 Jan 27; 63(1):22-36. PubMed ID: 4810208 [Abstract] [Full Text] [Related] Page: [Next] [New Search]